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a b s t r a c t

This paper proposes a radial basis function neural network (RBFNN), called the q-Gaussian RBFNN, that
reproduces different radial basis functions (RBFs) by means of a real parameter q. The architecture,
weights and node topology are learnt through a hybrid algorithm (HA). In order to test the overall
performance, an experimental studywith sixteen data sets taken from theUCI repository is presented. The
q-Gaussian RBFNN was compared to RBFNNs with Gaussian, Cauchy and inverse multiquadratic RBFs in
the hidden layer and to other probabilistic classifiers, including different RBFNN designmethods, support
vector machines (SVMs), a sparse classifier (sparse multinomial logistic regression, SMLR) and a non-
sparse classifier (regularizedmultinomial logistic regression, RMLR). The results show that the q-Gaussian
model can be considered very competitive with the other classification methods.

© 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Different kinds of neural networks are being used for classifi-
cation purposes, including multilayer perceptron neural networks
(MLPNNs) in which the transfer functions are sigmoidal unit ba-
sis functions (Haykin, 2008), radial basis function neural networks
(RBFNNs) with kernel functions in which the transfer functions
are usually Gaussian (Bishop, 1996) and product unit neural net-
works (PUNNs) (Martínez-Estudillo, Hervás-Martínez, Gutiérrez, &
Martínez-Estudillo, 2008), with multiplicative units.

In contrast to MLPs and PUNNs, RBFNNs use a localized
representation of information. There are several common kinds
of functions used as the transfer functions, for example, standard
Gaussian (SRBF), multiquadratic (MRBF), inverse multiquadratic
(IMRBF), and Cauchy (CRBF) ones. In this paper, we investigate
the performance of the q-Gaussian RBFNN in multiclassification
problems. This type of RBF can reproduce different RBFs, by
updating a real parameter q, and allowing different shapes of RBFs
in the same neural network.

Traditionally, an iterative training algorithm (e.g. a gradient-
based algorithm) or clusteringmethods in combinationwith linear
optimization techniques (e.g. k-means techniques and singular
value decomposition) are applied to find the parameters of
an RBFNN. Most learning algorithms proposed for constructing
RBFNNs conduct a clustering analysis on the training data set
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and allocate one hidden unit for each cluster (Hwang & Bang,
1997; Musavi, Ahmed, Chan, Farms, & Hummels, 1992). In recent
years, there has been growing interest in optimizing the radial unit
parameters of RBFNNs using evolutionary algorithms (Patrinos,
Alexandridis, Ninos, & Sarimveis, 2010; Pérez-Godoy, Fernández,
Rivera, & Del Jesus, 2010).

Evolutionary computation algorithms have also been used for
selecting variables for RBFNNs (Billings,Wei, & Balikhin, 2007) and
for enhancing RBFNN training (Rivas, Merelo, Castillo, Arenas, &
Castellano, 2004). Evolutionary algorithms (EAs) generally require
a great number of iterations, and they converge slowly, especially
in the neighbourhood of the global optimum. It thus makes
sense to incorporate a faster local search (LS) algorithm into the
EA in order to overcome this lack of efficiency while retaining
the advantages of both optimization methods. In the machine
learning community, these kinds of algorithms are known as
hybrid algorithms (HAs).

The non-linearity of the RBFs with respect to the parameters
implies that the corresponding Hessian matrix is generally
indefinite, and the likelihood function could have a local optimum.
In our opinion, these reasons justify the use of an alternative
heuristic procedure to obtain the optimized parameters of the
q-Gaussian RBFNN model.

The rest of this paper is organized as follows. A brief analysis of
the q-Gaussian distribution is given in Section 2. The q-Gaussian
RBF NN is presented in Section 3. Section 4 describes base
classifier applied to multiclassification problems. A methodology
for optimizing the RBF parameters based on HAs is presented in
Section 5. Section 6 explains the experiments thatwere carried out.
Finally, Section 7 summarizes the conclusions of our work.

http://dx.doi.org/10.1016/j.neunet.2011.03.014
http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
mailto:i22fenaf@uco.es
http://dx.doi.org/10.1016/j.neunet.2011.03.014


780 F. Fernández-Navarro et al. / Neural Networks 24 (2011) 779–784
2. The q-Gaussian distribution

Distributions known as normal or Gaussian, exponential,
Laplace, etc. can be obtained through the principle of maximum
entropy (Jaynes, 1957), under certain constraints, together with
the normalization condition of probability (Kang & Kwak, 2009).
The entropy function used in this approach is called the
Boltzmann–Gibbs–Shannon (BGS) entropy, defined as follows:
SBGS =


Ω
p(x) ln p(x)dx, where x is a randomvariable belonging to

a certain set Ω ∈ R, p(x) is the probability density function (pdf),
and p(x)dx is the probability that the system is in states x and x+dx.

However, some alternatives have emerged for replacing the BGS
traditional entropy function. Among them, one of the most at-
tractive has been proposed by Tsallis (1988): Sq =

1−

Ω p(x)qdx
q−1 ,

where q ∈ R. When q = 1, it reproduces the BGS entropic form.
The mathematical basis for Tsallis statistics includes q-generalized
expressions for the logarithm and exponential functions, which
are the q-logarithm and the q-exponential functions. The
q-exponential function, which reduces to exp(x) in the limit of
q → 1, is defined as follows:

exq ≡ (1 + (1 − q)x)
1

1−q =
1

(1 − (q − 1))
1

q−1
. (1)

The q-distributions can arise when the exponential function of
the original distribution is replaced by a q-exponential function.
This basic procedure applied to a standard Gaussian distribution
leads to a q-Gaussian distribution. This viewpoint suggests that
other q-distributions should be considered.

In this way, the q-Gaussian distribution is obtained by replacing
the exponential function by a q-exponential function andmaximiz-
ing the entropy Sq under the following constraints (Tsallis, Mendes,
& Plastino, 1998): (a)


Ω
p(x)dx = 1, (b)


Ω
xPesc(x)dx = µq and (c)

Ω
(x−µ)2Pescdx = σ 2

q > 0, where Pesc(x) is the escort probability,
defined as

Pesc(x) =
pq(x)

Ω
pq(x)dx

. (2)

Therefore, the q-Gaussian distribution is specified by the
following pdf (−∞ < q < 3):

p(x, µq, σq) = Aq

Bq[1 + (q − 1)Bq(x − µq)

2
]
1/1−q

= Aq

Bqe

−Bq(x−µq)
2

q (3)

where the parameters Aq, and Bq are defined as follows. The
normalization factor Aq is given by

Aq =



Γ


5−3q
2(1−q)


Γ


2−q
1−q

 1 − q
π

q < 1;

1
√

π
q = 1;

Γ


1

q−1


Γ


3−q

2(q−1)

q − 1
π

1 < q < 3.

(4)

Finally, the width of the distribution is characterized by

Bq = [(3 − q)σ 2
q ]

−1, q ∈ (−∞, 3). (5)

In the limit of q → 1, Eq. (3) recovers the usual Gaussian distri-
bution form, so q ≠ 1 indicates a departure from Gaussian statis-
tics. For 3 ≤ q, the form given in Eq. (3) is not normalizable. When
q = 2, the q-Gaussian distribution reproduces the Cauchy dis-
tribution. The usual variance (second-order moment) is finite for
q < 5/3, and, for the standard q-Gaussian distribution (Nq(0, 1)),
is given by σ 2

= (3 − q)/(5 − 3q). The usual variance of the
q-Gaussian distribution diverges for 5/3 ≤ q < 3; however the
q-variance remains finite for the full range −∞ < q < 3, equal to
unity for the standard q-Gaussian distribution.

An example of an application of the q-Gaussian distribu-
tion can be seen in Erdemir and Tanatar (2003), where the
q-Gaussian distribution was tested as a wavefunction for studying
the properties of high density Bose–Einstein condensates. On the
other hand, the q-Gaussian distribution has been employed in the
study of a wide range of themes including Bose-condensed gases
(Nicolin & Carretero-González, 2008) andDNAmolecules (Moreira,
Albuquerque, da Silva, & Galvao, 2008).

On the basis of the idea of the q-Gaussian distribution,we define
the q-Gaussian RBF, by transforming the exponential expression of
the standard RBF to a q-exponential expression.

3. q-Gaussian radial basis function neural networks

We focus on RBFNNs (Billings et al., 2007) which have been
successfully employed in different pattern recognition problems in
the last few years. Let the number of nodes in the input layer, in
the hidden layer and in the output layer be K ,M and J respectively.
For any sample x = [x1, x2, . . . , xK ], the output of the RBFNN is
f(x) = [f1(x), f2(x), . . . , fJ(x)]. The model of an RBFNN can be
described with the following equation:

fj(x) = β0j +

M−
i=1

βij · φi(di(x)), j = 1, 2, . . . , J (6)

where φi(di(x)) is a non-linear mapping from the input layer to
the hidden layer, βj = [β1j, β2j, . . . , βMj], for j = 1, 2, . . . , J , is
the weight of connection between the hidden layer and the output
layer, and β0j is the bias value for the class j. The function di(x)
can be defined as di(x) =

‖x−ci‖2

r2i
, where ri is the scalar parameter

that defines the width for the ith radial unit, ‖.‖ represents the
Euclidean norm and ci = [c1, c2, . . . , cK ] are the centres of the
RBFs. The standard RBF (SRBF) is the Gaussian function, which is
given by φi(di(x)) = e−di(x).

SRBFs present a very selective response,with high activation for
patterns close to the centroid and very small activation for distant
patterns. The RBFs φi(di(x)) can take different forms, including the
Cauchy RBF (CRBF) form defined by φi(di(x)) =

1
1+di(x)

and the
inverse multiquadratic RBF (IMRBF) form, given by φi(di(x)) =

1

(1+di(x))
1
2
.

The CRBF and the IMRBF have longer tails than the SRBF,
i.e., their activations for patterns distant from the centroid of
the RBF are bigger than the activation of the SRBF for those
patterns. In addition, the SRBF, CRBF and IMRBF functions do not
fall asymptotically to zero.

Other functions used in place of the SRBF as RBFs, could be
piecewise linear functions (PLRBFs) (Wang, Lu, & Chen, 2010),
cubic approximations (Stein & Feuer, 1998) and the thin plate
spline functions (TPSRBFs) which were employed in Dehghan and
Shokri (2008) to solve the two-dimensional damped/undamped
sine–Gordon equation. The radial cubic B-spline was introduced
in Saranli and Baykal (1998), where they concluded that these
functions achieve very similar performance to the SRBF, because
radial cubic B-splines and SRBFs have similar convergence
properties.

In this paper, we investigate the use of the q-Gaussian RBF
for multiclassification problems because this family of functions
considers, as already discussed in the previous section, different
kinds of local functions, in which the tails of the different functions
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Fig. 1. Radial unit activation in one-dimensional space with c = 0 and θ = 1 for
q-Gaussian RBFs with different values of q.

play crucial roles and one can reduce the q-Gaussian function to the
standardGaussian function. The q-Gaussian RBF for the RBF j can be
defined as φi(di(x)) = e

−dj(x)
qj , where qj is a real valued parameter

and the q-exponential function of −dj(x) is given by

φi(di(x))

=


(1 − (1 − q)di(x))

1
1−q if (1 − (1 − q)di(x)) ≥ 0;

0 Otherwise.
(7)

The q-Gaussian RBF can reproduce different RBFs for different
values of the real parameter q: when the q parameter is close to
2, the q-Gaussian is the CRBF; for q = 3 we have the activation
of a radial unit with an IMRBF for di(x) equal to the activation of
a radial unit with a q-Gaussian RBF for di(x)/2; and, finally, when
the value of q converges to 1, the q-Gaussian converges to the SRBF.
Fig. 1 presents the radial unit activation for the q-Gaussian RBF for
different values of q.

4. q-Gaussian RBFs for multiclassification

In a classification problem, measurements xi, i = 1, 2, . . . , K ,
of a single individual (or object) are taken, and the individuals
are to be classified into one of the J classes on the basis of these
measurements. A training sample D = {(xn, yn); n = 1, 2, . . . ,N}

is available, where xn = (x1n, . . . , xkn) is the random vector of
measurements taking values inΩ ⊂ RK , and yn is the class level of
the nth individual, where the common technique of representing
class levels using a ‘‘1-of-J ’’ encoding vector is adopted, y =

(y(1), y(2), . . . , y(J)).
In order to tackle this classification problem, the outputs of the

q-Gaussian RBFNN model have been interpreted from the point
of view of probability through the use of the softmax activation
function:

gl(x, θl) =
exp fl(x, θl)

J∑
j=1

exp fj(x, θj)

, l = 1, 2, . . . , J (8)

where fj(x, θl) (Eq. (6)) is the output of the jth output neuron for
pattern x and gl(x, θl) is the probability that a pattern x has of
belonging to class j.

The function used to evaluate a q-Gaussian RBFNN is the
function of cross-entropy error and it is given by the following
expression:

l(θ) = −
1
N

N−
n=1

J−
l=1

y(l)
n log gl(x, θl)

=
1
N

N−
n=1


−

J−
l=1

y(l)
n fl(xn, θl) + log

J−
l=1

exp fl(xn, θl)


(9)
Fig. 2. Hybrid algorithm (HA) framework.

where θ = (θ1, . . . , θJ). A scheme for these models is given in the
website associated with this paper.1

5. Hybrid algorithms

The basic framework of the HA is the following: the search
begins with an initial population of RBFNNs and, in each iteration,
the population is updated using a population-update algorithm
that evolves both its structure and its weights. The population
is subject to operations of replication and mutation. The neural
networks are represented using an object-oriented approach and
the algorithm deals directly with the RBFNN phenotype. Fig. 2
describes the procedure used to select the parameters of the
q-Gaussian RBFNN. The main characteristics of the algorithm are
the following:
1. Error and fitness functions. We consider l(θ) (Eq. (9)) as the

error function of an individual g of the population. The fitness
measure needed for evaluating the individuals is a strictly
decreasing transformation of the error function l(θ) given by
A(θ) =

1
1+l(θ) , where 0 < A(θ) ≤ 1.

2. Initialization of the population. First, 5000 random RBFNNs are
generated. The centres of the radial units are first defined
using the k-means algorithm for different values of k, where
k ∈ [Mmin,Mmax], and Mmin and Mmax are the minimum and
maximum number of hidden nodes allowed for any RBFNN
model in the HA. The widths of the RBFNNs are initialized
to the geometric mean of the distance to the two nearest
neighbourhoods and the q parameter to values near to 1,
becausewhen q → 1 the q-Gaussian RBF reduces to the SRBF. A
random value in the [−I, I] interval is assigned for the weights
between the hidden layer and the output layer. The individuals
obtained are evaluated using the fitness function and the initial
population is finally obtained by selecting the 500 best RBFNNs.

3. Structural mutation. There are four different structural muta-
tions: hidden node addition, hidden node deletion, connection
addition and connection deletion. These four mutations are ap-
plied sequentially to each network, each one with a specific
probability. If the structural mutator adds a new node in the
RBFNN, the q parameter is assigned to a γ value, where γ ∈

[0.75, 1.25].
4. Parametric mutation. Differentweightmutationswere applied:

• Centre, radius and q mutation. These parameters were
modified in the following way:
– Centre creep. The value of each centre is modified by

adding a Gaussian noise term, cji(t + 1) = cji(t) + ξ1(t),

1 http://www.uco.es/ayrna/QRBF.

http://www.uco.es/ayrna/QRBF
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where ξ1(t) ∈ N(cji, ri) and N(cji, ri) represents a one-
dimensional normally distributed random variable with
mean cji and with a standard deviation equal to the radius
of the ith RBF hidden node.

– Radius creep. The value of each radius is modified by
adding another Gaussian noise, ri(t + 1) = ri(t) + ξ2(t),
where ξ2(t) ∈ N(ri, d) and N(ri, d) represents a one-
dimensional normally distributed random variable with
mean ri andwith standard deviation thewidth of the range
of each dimension (d).

– Mutation of the q parameter. The q parameter is updated
by adding a uniform ε value, where ε ∈ [−0.25, 0.25].

• Output-to-hidden node connection mutations. These connec-
tions are modified by adding another Gaussian noise term,
w(t + 1) = w(t) + ξ(t), where ξ(t) ∈ N(0, T (g)) and
N(0, T (g)) represents a one-dimensional normally dis-
tributed random variable with mean 0 and variance equal to
the network temperature (T (g) = 1 − A(g)). Further details
on these kinds ofmutations can be found inHervás-Martínez,
Martínez-Estudillo, and Carbonero-Ruz (2008).

5. iRprop+ local optimizer. The local optimization algorithm used
in our paper is the iRprop+ (Igel & Hüsken, 2003) optimization
method. In the proposed methodology, we run the EA and
then apply the local optimization algorithm to the best solution
obtained by the EA in the last generation. The adaptation of
the iRprop+ local improvement procedure can be seen in the
website associated with this paper.

6. Experiments

The proposed methodology was applied to sixteen data sets2
taken from the UCI repository (Asuncion & Newman, 2007). All
nominal variables were transformed to binary variables. The data
sets with their corresponding partitions have been included in the
website associated with this paper.

6.1. Experimental design

The proposed method (q-Gaussian) is compared with the
following:

• Other RBFs obtained with the same HA (detailed in 5):
– The standard radial basis functions (SRBF) where the transfer

function is Gaussian.
– The Cauchy radial basis function (CRBF).
– The inverse multiquadratic radial basis function (IMRBF).

• Some high performance probabilistic classifiers:
– A Gaussian RBF network (RBFN) (Nabney, 2004), deriving

the centres and width of hidden units using the k-means
approach and combining the outputs obtained from the
hidden layer using logistic regression.

– The AdaBoost.M1 algorithm (Freund & Schapire, 1996), using
an RBFN as the base learner and the maximum number of
iterations set to 100 iterations (Ada100(RBFN)).

– The C-SVM algorithm (Hastie, Tibshirani, & Friedman, 2001)
with Gaussian RBF kernels (SVM).

– The sparse multinomial logistic regression (SMLR) algorithm
(Krishnapuram, Carin, Figueiredo, & Hartemink, 2005). This
methodhas been selected as a good representative of recently
developed sparse classifiers (RVM, PCVM, . . . ).

2 Data set titles: Hepatitis, Heart-disease, Breast-cancer, Heart, Liver, Vote, Card,
German, Wine, Newthyroid, Horse, Balance, Lymphography, Anneal, Glass, Zoo.
– The regularized multinomial logistic regression (RMLR)
algorithm (Yamashita, Sato, Yoshioka, Tong, & Kamitani,
2008): a multiclass version of the RLR (regularized logistic
regression with Laplace approximation) algorithm.

For the selection of the SVM hyperparameters (the regulariza-
tion parameter, C , and the width of the Gaussian functions, γ ), a
grid search algorithm was applied with a tenfold cross-validation,
using the following ranges: C ∈ {2−5, 2−3, . . . , 215

} and γ ∈

{2−15, 2−13, . . . , 23
}. RMLR and SMLR algorithms estimate the λ

regularization value automatically.
All the parameters used in the HA except the maximum and

minimum numbers of RBFs in the hidden layer ([Mmin,Mmax]) and
the number of generations (#Gen) have the same values in all
problems analysed below. For the selection of these parameters, a
grid search algorithm was applied with a tenfold cross-validation
in an analogous way to the method used in the algorithms that
it is compared with, using the following ranges: [Mmin,Mmax] ∈

{[2, 5], [4, 7], [9, 12]} and #Gen ∈ {20, 40, 100, 400}.
We did a simple linear rescaling of the input variables over

the interval [−2, 2], with X∗

i being the transformed variables. The
connections between the hidden and output layer were initialized
in the [−5, 5] interval (i.e. [−I, I] = [−5, 5]). The size of the
population was N = 500. For the structural mutation, the number
of nodes that could be added or removed was within the [1, 2]
interval, and the number of connections to add or delete in the
hidden and the output layer during structural mutations was
within the [1, 7] interval.

For the models obtained by the HA proposed in this paper
(q-Gaussian, SRBF, IMRBF and CRBF), the experimental design was
conducted using a tenfold cross-validation, with ten repetitions
per part. For the other methods, the results were obtained by
performing a tenfold cross-validation ten times, because they
were all deterministic methods. The performance of each method
was evaluated using the correct classification rate (C) in the
generalization set.

The HA and the model proposed were implemented in Java. For
the other RBFs (the CRBF, SRBF and IMRBF), the iRprop+ algorithm
was modified slightly, taking into account which RBF was being
used in the hidden layer.We also used ‘‘libsvm’’ (Chang& Lin, 2001)
to obtain the results from the SVM method, and WEKA to obtain
the results from the RBFN and Ada100(RBFN) methods. The SMLR
and RMLR methods belong to the SLR toolbox, available as a suite
of MATLAB functions and scripts.3

6.2. Analysis of the results

In this section, we analyse the results obtained. Specifically,
we check the performance (mean accuracy value from the 100
executions of each data set) of the GRBF model and eight other
related methodologies. For the sake of simplicity, we only include
the graphical and statistical results achieved; the complete results
can be found at the website associated with this paper.

In the scatterplot of Fig. 3, each point compares GRBF to another
methodology on a single data set. The x-axis position of the point
is the accuracy of the GRBF, and the y-axis position is the accuracy
of the compared algorithm. Therefore, points below the y = x
line correspond to data sets for which GRBF performs better in
mean than the other algorithm. From the analysis of the results,
it can be concluded that the q-Gaussian model produced the best
mean ranking (R = 2.00) and reported the highest mean accuracy
(CG = 84.99%).

To determine the statistical significance of the rank differences
observed for each method in the different data sets, we carried out
a non-parametric Friedman test (Friedman, 1940)with the ranking

3 http://www.cns.atr.jp/~oyamashi/SLR_WEB/.

http://www.cns.atr.jp/~oyamashi/SLR_WEB/
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Fig. 3. Comparison of the proposed basis functions to other methods: accuracy
results over 16 data sets.

Fig. 4. The Nemenyi test using CG as the variable test. CD is the critical difference.

of CG of the best models as the test variable. The test showed that
the effect of the method used for classification was statistically
significant at a significance level of 5%.

On the basis of this rejection, the Nemenyi post hoc test
was used to compare all classifiers with each other (Hochberg &
Tamhane, 1987). However, it has been noted that the approach of
comparing all classifiers with each other in a post hoc test is not
as sensitive as the approach of comparing all classifiers to a given
classifier (a control method). One approach to this latter type of
comparison is the Holm test.

The results of the Holm and Nemenyi tests (Fig. 4) for α = 0.05
can be seen at the website associated with this paper. Note that
q-Gaussian model is established as the control algorithm because
it has obtained the best mean ranking. Using a level of significance
α = 0.05, the q-Gaussian is significantly better than the rest of
themethods, considering the accuracymeasure,which justifies the
proposal.

6.3. Analysis of the best q-Gaussian model for the Liver data set

In this section, we study in detail the best q-Gaussian RBFNN
obtained for the biclass Liver data set. We considered the best
model to be of one of the ten folds used in the experiments
(specifically the ninth one). The model for the Liver data set was
determined by three basis functions:

φ1(d1) = (1 − (1 − 0.106) · d1(x))
1

1−0.106

φ2(d2) = (1 − (1 − 1.024) · d2(x))
1

1−1.024

φ3(d3) = (1 − (1 − 1.077) · d3(x))
1

1−1.077

where the function di(x) for i = 1, 2, 3 is defined as

d1 =


(x⋆

1 − 0.601)2 + (x⋆
3 + 1.253)2 + (x⋆

5 + 2.053)2

0.523

2

d2 =


(x⋆

1 − 1.692)2 + (x⋆
3 − 0.076)2 + (x⋆

4 + 0.758)2

1.287

2

d3 =


(x⋆

4 − 0.629)2

1.498

2

x⋆
i ∈ [−2, 2] for i = 1, . . . , 6

and the output of the softmax transformation is

g1(x) =
exp(−0.723 + 3.501φ1 + 5.226φ2 − 2.646φ3)

1 + exp(−0.723 + 3.501φ1 + 5.226φ2 − 2.646φ3)
.

By using the properties of softmax, the decision rule can be
expressed in amore simplifiedwayusing the discriminant function
C(x):

C(x) =


1 if 3.501φ1 + 5.226φ2 − 2.646φ3 > 0.723
0 if 3.501φ1 + 5.226φ2 − 2.646φ3 < 0.723.

As we can see, the best model for the Liver data set is composed
of two standardRBFs (φ2(d2(x)) andφ3(d3(x))) and anon-standard
RBF (φ1(d1(x)) where the q value is 0.106). The activation of the
q-Gaussian RBF φ1(d1(x)) for patterns distant from the centroid
was smaller than the activation of the remaining RBFs.

The performance of this q-Gaussian model on the training set
was 71.38% and on the generalization set it was 85.29%. It is
important to note that, if this model was of the SRBF type (q → 1),
the performance of the model on the training set was 64.30% and
on the generalization set it was 76.47%.

One of the major advantages of the q-Gaussian model is
the reduced number of features and RBFs included in the final
expression, because the HA reduces its complexity by pruning
mutations. This can result in a better interpretability of the model,
which is especially important when dealing with real problems.

On the other hand, we observed that the q-Gaussian model
transformed the six-dimensional input space into a three-
dimensional space given by the basis functions. Themodel is aimed
at capturing the interactions among the variables and reducing
the dimensionality of the space. It is interesting to note that this
reduction allowed us to depict the separation of the two classes
into training (Fig. 5(a)) and generalization points (Fig. 5(b)) by
means of linear functions in the transformed space. Finally, Fig. 5(c)
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Fig. 5. Analysis of the performance of the q-Gaussian RBFNN on the Liver data set: graphics for (a) training and (b) generalization points and the decision boundary; and
graphics for φ1(d1(x)) using the variables x∗

1 and x∗

3 when (c) q → 1 (SRBF) and (d) q has been optimized by the HA (q = 0.106).
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and (d) represent the φ1(d1(x)) using the standard RBF (the
q-Gaussian with q → 1) and the corresponding q-Gaussian with
the q value optimized by the HA.

7. Conclusions

In this paper, we proposed a new approach for determining
the optimized parameters for the q-Gaussian RBFNN. The use of
q-Gaussian RBFs made it possible to modify the shape of the RBF
by changing the real parameter q. The q-Gaussian RBFNN proposed
used the softmax function and the cross-entropy error function
in order to interpret the output of the q-Gaussian RBFNN from
the point of view of probability. The coefficients that minimized
the cross-entropy error function were estimated by means of
an HA. The large experimental study performed allowed us to
show that this proposal is a suitable method for addressing
multiclassification problems.
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