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In this paper, a dynamic over-sampling procedure is proposed to improve the classification of imbalanced
datasets with more than two classes. This procedure is incorporated into a Hybrid algorithm (HA) that
optimizes Multi Layer Perceptron Neural Networks (MLPs). To handle class imbalance, the training data-
set is resampled in two stages. In the first stage, an over-sampling procedure is applied to the minority
class to partially balance the size of the classes. In the second, the HA is run and the dataset is over-
sampled in different generations of the evolution, generating new patterns in the minimum sensitivity
class (the class with the worst accuracy for the best MLP of the population). To evaluate the efficiency
of our technique, we pose a complex problem, the classification of 1617 real farms into three classes (effi-
cient, intermediate and inefficient) according to the Relative Technical Efficiency (RTE) obtained by the
Monte Carlo Data Envelopment Analysis (MC-DEA). The multi-classification model, named Dynamic
Smote Hybrid Multi Layer Perceptron (DSHMLP) is compared to other standard classification methods
with an over-sampling procedure in the preprocessing stage and to the threshold-moving method where
the output threshold is moved toward inexpensive classes. The results show that our proposal is able to
improve minimum sensitivity in the generalization set (35.00%) and obtains a high accuracy level
(72.63%).

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Classification problems based on imbalanced training datasets
often occur in applications where there are rarely events of inter-
est. That is, the size of interesting minority groups is usually in a
rather small proportion in the training dataset (Chawla, Japlowicz,
& Kotcz, 2006; Zhao & Huang, 2007). Imbalanced training datasets
often results in low classification accuracies for minority classes
(He & Garcia, 2009; Sun, Wong, & Kamel, 2009; Torres, Hervás, &
García, 2009).

Many techniques are proposed to solve this kind of classifica-
tion problem through either data (Kubat & Matwin, 1997) or
algorithmic levels (Pazzani et al., 1994). In this paper, a dynamic
over-sampling procedure (hybrid approach between data and algo-
rithmic solutions) is proposed to improve the classification of
imbalanced datasets that have more than two classes. The base
over-sampling procedure is the Synthetic Minority Over-sampling
Technique (SMOTE) (Chawla, Bowyer, Hall, & Kegelmeyer, 2002).
This procedure has been applied in several research fields, for
example in predictive microbiology (Fernández-Navarro et al.,
ll rights reserved.

: +34 957 21 83 60.
arro).
2010; Fernández-Navarro, Hervás-Martı́nez, Cruz, Gutierrez, &
Valero, 2011).

This procedure is incorporated into a Hybrid algorithm (HA)
(Moscato & Cotta, 2003) that optimizes Multi Layer Perceptron
Neural Networks (MLPs). The HA combines an Evolutionary algo-
rithm (EA) (Back, 1996), a clustering process, and a Local Search
(LS) procedure. The main objective of this research is, due to the
unbalanced class structure (Fernández, Del Jesus, & Herrera,
2009; Sun et al., 2009), to check dynamic oversampling methods,
where the class that increases its size is the one that has minimum
sensitivity (MS) during the evolutive process. The base algorithm
was proposed in Fernández-Navarro, Hervás-Martı́nez, and
Gutíerrez (2011).

In recent years, several research projects related to DEA models
have been developed, in the area of data mining, of which we high-
light the papers by Toloo, Sohrabi, and Nalchigar (2009) and Yeh,
Chi, and Hsu (2009). In the research works of Wu (2009) and Tsai,
Lin, Cheng, and Lin (2009), the combination of neural networks and
DEA models have already been applied successfully.

The performance of the proposed methodology was evaluated
in a real problem which consists of classifying 1617 farms into
three classes (efficient, intermediate and inefficient) according to
Relative Technical Efficiency (RTE) obtained by use of the Monte
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Carlo Data Envelopment Analysis (MC-DEA) model on the 65
Agrarian Productive Strategies (APS) or typologies identified in
the original database. The classification problem is very complex
due to unbalanced class structure and the way in which this has
determined the class each farms belongs. (see Section 3.1.1).

This paper is organized as follows: Section 2 describes the base
classifier, the learning algorithm and over-sampling approaches;
Section 3 explains the experiments carried out and a brief analysis
of the database; Section 4 reports on the results obtained with the
proposed methods and the results with methodologies used for
comparative purposes and, finally, Section 5 summarizes the con-
clusions of our work.

2. Classification method

2.1. Base classifier

In this paper, we consider standard feed forward MLP with one
input layer with independent variables or features, one hidden
layer with sigmoidal hidden nodes and one output layer.

Let a coded ‘‘1-of-J’’ outcome variable y, (that is the outcome has
the form y = (y(1),y(2), . . . ,y(J)), where y(j) = 1 if the pattern belongs to
the class j, and y(j) = 0, otherwise); and a vector x = (1,x1,x2 , . . . ,xK)
of input variables, where K is the number of input (we assume that
the vector of inputs includes the constant term to accommodate
the intercept or bias).

Then, the output layer is interpreted from a point of view of
probability which considers the softmax activation function. The
activation function of the lth node in the hidden layer is given by:

glðx; hlÞ ¼
exp flðx; hlÞPJ
l¼1 exp flðx; hlÞ

; l ¼ 1;2; . . . ; J ð1Þ

where gl(x,hl) is the probability a pattern x has of belonging to class
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where r(�) is the sigmoidal activation function.
The classification rule C(x) of the MLP model is C(x) = arg

max{gl(x,hl)}, this classification rule coinciding with the optimal
Bayes’ rule.

The best MLP is determined by means of a Hybrid algorithm
(HA) that optimizes the error function given by the negative log-
likelihood for N observations associated with the MLP model:

L�ðhÞ ¼ 1
N

XN

n¼1

�
XJ�1

l¼1

yðlÞn flðxn; hlÞ þ log
XJ�1

l¼1

exp flðxn; hlÞ
" #

ð3Þ

where yðlÞn is equal to 1 if the pattern xn belongs to the lth class and
equal to 0 otherwise.

2.2. Performance measures: correct classification rate and minimum
sensitivity

Minimum sensitivity (MS) and the correct classification rate or
accuracy (C) measures associated with a given classifier g are con-
sidered to be the performance measures in this work.

Firstly, we have to define the MS and C measurements which are
derived from the contingency or confusion matrix M.

M ¼ nij;
XJ

i;j¼1

nij ¼ N

( )
ð4Þ
where J is the number of classes, N is the number of training or test-
ing patterns and nij represents the number of times the patterns are
predicted by classifier g to be in class j when they really belong to
class i. The diagonal corresponds to correctly classified patterns
and the off-diagonal to mistakes in the classification task.

Let us denote the number of patterns associated with class i by
fi ¼

PJ
j¼1nij, i = 1, . . . , J. Let Si = nii/fi be the number of patterns cor-

rectly predicted to be in class i with respect to the total number of
patterns in class i (sensitivity for class i). Therefore, the sensitivity
for class i estimates the probability of correctly predicting a class i
example.

From the above quantities the minimum sensitivity (MS) of a
classifier g is the minimum value of the sensitivities for each class:

MS ¼min Si; i ¼ 1; . . . ; Jf g ð5Þ

The correct classification rate or accuracy (C) is defined as:

C ¼ ð1=NÞ
XJ

j¼1

njj ð6Þ

that is, the rate of all correct predictions.
Minimum sensitivity and accuracy measures express two fea-

tures associated with a classifier: global performance C and the
accuracy for the worst classified class S. These measures have been
simultaneously taken into account in previous studies (Martínez-
Estudillo, Gutiárrez, Hervás-Martínez, & Fernández, 2008), achiev-
ing good performance for the classification of imbalanced data. In
this paper, the application of dynamic over-sampling techniques
improves the sensitivity of the classifier population, without
drastically decreasing global accuracy.

2.3. Base evolutionary algorithm

An evolutionary algorithm is applied to estimate the structure
and learn the weights of standard MLP neural networks models.
The basic framework of the evolutionary algorithm is the follow-
ing: the search begins with an initial population of neural networks
and, in each iteration, the population is updated using a popula-
tion-update algorithm which evolves both its structure and
weights. The population is subject to the operations of replication
and mutation. Crossover is not used due to its potential disadvan-
tages in evolving artificial networks (Angeline, Sauders, & Pollack,
1994; Fernández-Navarro, Hervás-Martı́nez, Gutierrez, &
Carboreno, in press; Yao & Liu, 1997).

The algorithm evolves architectures and connection weights
simultaneously, each individual being a fully specified MLP. Neural
networks are represented using an object-oriented approach and
the algorithm deals directly with the MLP phenotype. Each connec-
tion is specified by a binary value indicating if the connection ex-
ists and a real value representing its weight. As the crossover is
not considered, this object-oriented representation does not
assume a fixed order between different hidden nodes. The general
structure of the EA has been included in Fig. 1, where N and pm are
parameters of the algorithm.

We considered L⁄(h) defined in (3) as the error function of an
individual g in the population. The fitness measure needed to eval-
uate the individuals is a strictly decreasing transformation of the
error function L⁄(h) given by

AðgÞ ¼ 1
1þ L�ðhÞ ; 0 < AðgÞ 6 1 ð7Þ

The severity of both structural and parametric mutations de-
pends on the temperature T(g) of the neural network model, de-
fined by:

TðgÞ ¼ 1� AðgÞ; 0 6 TðgÞ 6 1 ð8Þ

where A(g) is the fitness of the individual or model g.



Fig. 1. Base evolutionary algorithm (EA) framework.
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Given the vector of parameters representing the MLP,
h = (h1, . . . ,hQ), parametric mutation (Fig. 1, step 8) is accomplished
for each weight w 2 h adding Gaussian noise:

wðt þ 1Þ ¼ wðtÞ þ nðtÞ ð9Þ

where n(t) represents a one dimensional normally distributed ran-
dom variable, N(0,a � T(g)). The a value is updated throughout the
evolutionary process, applying the simplest heuristic 1/5 success
rule of Rechenberg (1973). The weights are sequentially mutated,
hidden node after hidden node, and a standard simulated annealing
process is applied to accept or reject the modifications in each node.

On the other hand, structural mutation (Fig. 1, step 9) implies a
modification in the neural network structure and allows explora-
tions of different regions in the search space while helping to keep
up the diversity of the population. There are four different struc-
tural mutations: node deletion, connection deletion, node addition
and connection addition. These four mutations are applied sequen-
tially to each network.

For each mutation, there is a minimum value Dmin and a maxi-
mum value Dmax, and the number of elements (nodes and connec-
tions) involved in the mutation is calculated as

Dmin þ uTðgÞðDmax � DminÞ ð10Þ

where u is a random uniform variable in the interval [0,1]. All the
above mutations are made sequentially in the given order, with
probability T(g), in the same generation on the same network. If
probability does not select any mutation, one of the mutations is
chosen at random and applied to the network. Finally, a maximum
number of hidden nodes m is used to control the final complexity of
the MLPs.

The stop criterion is reached when the following condition is
fulfilled: for 20 generations there is not improvement in the aver-
age performance of the best 10% of the population or when 500
generations are completed.

For further details about parametric and structural mutations
and other characteristics of the algorithm see the papers of
Gutiérrez, Hervás-Martínez, Carbonero, and Fernández (2009)
and Martínez-Estudillo, Hervás-Martínez, Gutiárrez, and Martí-
nez-Estudillo (2008).

2.4. The Hybrid Multi Layer Perceptron algorithm (HMLP)

The Hybrid Multi Layer Perceptron (HMLP) consists of applying
the previously described base evolutionary algorithm but including
a local search to some specifically selected individuals. This Hybrid
algorithm (HA) includes an optimization clustering process applied
every 50 generations of the evolutionary algorithm. In this cluster-
ing process, each neural network model or individual is repre-
sented by the set of the accuracies of the neural network model
for each class of the problem (called Sensitivity Clustering in
Fig. 2). The clustering algorithm is able to obtain groups of individ-
uals that show similar behavior for different classes. After that, we
apply the iRprop + algorithm (Igel & Hüsken, 2003) to the individ-
ual closest to the centroid obtained in each cluster and the opti-
mized individual with the best minimum sensitivity value in the
training set is returned as the final solution (Hybrid Evolutionary
algorithm with the Sensitivity Clustering solution, HEASC solution
in Fig. 2). This solution is stored every 50 generations. The final
solution is the individual with the best minimum training sensitiv-
ity value among the local optima found during the evolutionary
process. The methodology proposed is described in Fig. 2

Another feature of our approach is that the optimized individu-
als are not included in the new population. Once the optimization
algorithm is applied, we think that any further modification, by
some mutation, of the individual will be counterproductive, be-
cause the HA does not include a crossover operator and the opti-
mized genotype will not be transferred. So, these individuals are
stored in a separate population till the end of the EA unlike Memet-
ic algorithms (MAs) where the optimized individuals are returned
to the population (Whitley, Gordon, & Mathias, 1994).

This combination of a clustering process and a local optimiza-
tion method for EAs was previously proposed in Martínez-Estudil-
lo, Hervás-Martínez, Martínez-Estudillo, and García-Pedrajas
(2006), and obtained good results in regression problems. In this
paper, the method has been adapted for classification problems.
2.5. A dynamic over-sampling approach: Dynamic Smote Hybrid Multi
Layer Perceptron algorithm (DSHMLP)

This section describes the Dynamic Smote Hybrid Multi Layer
Perceptron (DSHMLP) algorithm. In this approach, the dataset is
modified in two stages. Firstly, the dataset is changed before the
algorithm performs (taking into account the number of patterns
per class) and secondly, the dataset is increased by adding the
number of patterns in the minimum sensitivity class in different
generations of the HA. The DSHMLP algorithm is detailed in Fig. 3

The DSHMLP method include a pre-processing stage (see Step 1
Fig. 3) where the number of minority class patterns is added. The
aim is to decrease the problem imbalance rate (He & Garcia,
2009; Sun, Kamel, Wong, & Wang, 2007) by selecting the minority
class to apply the resampling procedure. Synthetic examples are
obtained by the Synthetic Minority Over Sampling Technique
(SMOTE) algorithm (Chawla et al., 2002) applied to minority class
patterns. The procedure is performed subject to the following
condition:

p� 6
1

2 � J ð11Þ

where J is the number of classes and p⁄ is the minimum of prior esti-
mated probabilities (i.e. p⁄ = min{(fi/N), 1 6 i 6 J}, where fi is the
number of patterns of the ith class and N is the total number of pat-
terns). This condition was established since the preprocessing
SMOTE should be applied only to the most imbalanced datasets
(the size of the minority class is less than half of the size that this
class should be in an ideal balanced case). The problem of classify-
ing the real farms considered in this work fulfills that condition,
therefore, the minority class is doubled in the preprocessing stage.

After that, the HA runs, and every 50 generations from the ini-
tial generation 25, the HA is stopped and the proposed over-sam-
pling procedure is applied. The over-sampling procedure is
defined as follows: first, the DSHMLP method selects the best
MLP from the population and determines the class with minimum
sensitivity (see Step 6 Fig. 3). If two or more classes are classified
with the same minimum sensitivity, the minority class is selected.



Fig. 2. Hybrid Multi Layer Perceptron methodology.

Fig. 3. Dynamic Smote Hybrid Multi Layer Perceptron algorithm (DSHMLP)
framework.
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The selected class is over-sampled by taking each pattern from the
minimum sensitivity class and introducing synthetic examples
along the line segments joining any/all of the k minority class near-
est neighbors. Our implementation currently uses five nearest
neighbors as the maximum value of the k parameter in the SMOTE
algorithm (see Step 7–11 Fig. 3), as suggested by Chawla et al.
(2002). The over-sampling method adds the number of patterns
that the class had in the original dataset without considering syn-
thetic patterns to generate new samples. Once synthetic patterns
have been generated, these are inserted into the training set,
resulting in the need to re-evaluate and sort the population accord-
ing to fitness (see Step 13–16 Fig. 3). This procedure is performed
whenever the following condition is fulfilled:
ðCt þrC P Ct�1Þ and ðMSt � DMS P MSt�1Þ ð12Þ

where Ct, Ct�1, MSt and MSt�1 are the values of C and MS of the best
MLP in the over-sampling steps t and t � 1 andrC and DMS are the
decrement and increment values of C and MS, required carry out the
next step of dynamic over-sampling. To test the over-sampling pro-
cedure, the configuration parameter values considered are, a DMS
value of 5 and a rC of 2, since for high values of C, the MS measure
can be in conflict with C.
3. Experiments

3.1. Database analysis

3.1.1. Determination of Relative Technical Efficiency (RTE)
In this study, 65 different types of Agrarian Productive Strate-

gies (APS) were identified – in a sample of 1617 surveyed agrarian
enterprises in the south of Spain- based on both the Gross Value
Added (GVA) of the main productive activity and the size of the
farm (very small, small, medium sized, big and very big) (Fig. 4,
Activity 1). In all the APS, costs and revenues were determined as
random variables and fitted to standard statistical distributions
(uniform, triangular and trapezoidal). In order to evaluate RTE,
Monte Carlo Data Envelopment Analysis (MC-DEA) (Hu, Lai, &
Huang, 2009; Liang, Li, & Li, 2009) was used selecting the
Banker–Charnes–Cooper (BCC) input-oriented model. The BCC-
DEA model was selected because, in this framework, there is no
evidence of a constant return to scale environment. In each simu-
lation, a new BCC-DEA model is generated by the Monte-Carlo
engine. Input and output values were also interpreted (Lin, Lee, &
Chiu, 2009; Zerafat Angiz, Emrouznejad, Mustafa, & Rashidi Komi-
jan, 2009) if they were considered non-standard or undesired (po-
sitive inputs, negative outputs, etc.). RTE scores generated a
statistical distribution of the efficiency of each productive strategy
analysed (Fig. 4, Activity 2).

For each APS analysed (65), 2500 simulations were carried out
(Fig. 4, Activity 3). Using the frequency results of the 65 APS in each
simulation, a k-means algorithm was used and obtain the best in-
ter and intra-group variance results to identify different effycien-
cy-based classes of APS (Fig. 4, Activity 4). From this analysis, 3



Identification 65 APS
(1617 surveyed farms)

Socio-Economic variables were
fitted to specific statistical

distributions

5 Replications of 500
simulations each one

Efficiency Results were collected
from the simulation process

Classify the 65 APS in 3
groups of classes (K-Means)

Assign class of each 1617 real
farms according to the class obtained

for the corresponding APS

Run DSHMLP Method

Fig. 4. Structure of the analysis.
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different groups or classes were identified: efficient, intermediate
and inefficient agrarian productive strategies.

The real farms surveyed inherited the corresponding class –
efficient, intermediate and inefficient – obtained for their APS
(Fig. 4, Activity 6). Therefore, the classes that were found carrying
out the BCC-DEA model in a selected group of APS were assigned
to all the farms included in the corresponding agrarian productive
strategy.
3.1.2. Database description
The complete socio-economic structure of 1617 agrarian farms

comprised the database analysed. This database included informa-
tion about: farmer characteristics, mechanization, the size of the
farm and, finally, the costs and revenues of all productive activities.
Micro-economic information was grouped into the most consistent
set of variables that described the activity and production of the
farms surveyed. The descriptive variables of agrarian enterprises
were the following: Crop revenues (Rev) and subsidies (Sub), land
rental, fallow land revenues, etc. (ORev), diversification revenues,
service made to others and other revenues (DRev), number of crops
(# Crops), seed and plant costs (Seed), fertilizer, pesticide hand la-
bor and energy costs (Fert, Pest and HLab), other cost of crops
(OCrops), energy costs of the enterprise (Ener), service costs of
the enterprise (Serv), Financial, fallow land maintenance and land
Table 1
Statistics (1617 cases) of each of the input variables.

Variable Mean Median Mode Std.Dev.

Rev 0.40 0.07 0.01 1.83
Sub 1.63 0.69 0.00 3.19
ORev 0.07 0.00 0.00 1.30
DRev 0.28 0.00 0.00 2.33
#Crop 1.63 1.00 1.00 0.97
Seed 0.49 0.01 0.00 2.78
Fert 2.15 0.56 0.00 4.64
Pest 1.19 0.13 0.00 3.68
HLab 1.29 0.24 0.30 3.43
OCost 0.30 0.02 0.00 1.94
Ener 0.25 0.04 0.00 1.61
Serv 0.51 0.05 0.00 1.91
Fin 0.61 0.00 0.00 2.57
Tax 0.67 0.16 0.00 2.36
Main 0.90 0.05 0.00 3.43
HLma 1.17 0.09 0.00 3.97
ERev 0.22 0.00 0.00 1.88
rental costs (Fin), social security costs and taxes (Tax), mainte-
nance costs excluding hand labor (Main), hand labor costs in main-
tenance (HLma) and revenues obtained outside agrarian activity
(ERev). The main statistical characteristics of all input variables
can bee seen in Table 1.

The first four variables (Rev, Sub, ORev and DRev) were consid-
ered to be outputs and the rest, 13 in total, as inputs. All of these
variables except #Crop were homogenized per area (hectares, ha)
to eliminate the influence of farm size. The farm size was included
in the definition of the APS that were analysed initially (see Section
3.1.1).

In order to make the BCC-DEA analysis easier, all the original
data was standardized within a [0,50] range because this strategy
allowed the model to avoid extreme numerical values when their
statistical distributions were identified (see Table 1). In addition
to this data, all the 1617 farms analysed were described by an effi-
ciency-based class obtained from the k-means method (k = 3) that
analysed the frequency scores obtained from MC-BCC-DEA. So,
each farm was grouped into one of the following categories or clas-
ses: efficient, intermediate and inefficient.

The first cluster obtained groups the intermediate farms where
the probability of being efficient is within [0.548,0.766]-average
0.693, being, on the other hand, the probability of being weak-effi-
cient within [0.166,0.416] (see Table 2). Efficient agrarian enter-
prises are in cluster 2, in this group the probability of being
efficient increases a lot and is located within [0.739,0.97]-average
0.843. Finally, non efficient productive strategies are located in
cluster 3, the probability of being efficient is low and within
[0.417,0.698]-average 0.589 (see Table 2).

Once the k-means analysis was carried out, a discriminant
analysis on each APS was used to analyze the validity of the clas-
sification obtained (3 efficiency-based groups). The 65 APS data-
set was randomly divided 10 times in two samples following
the guidelines of Prechelt (1994): training (60%–70%) and gener-
alization (40%–30%) sets. Results obtained showed that all the
classes were very well recognized with a percentage higher than
95.20% (generalization) in the worst sample design. Other designs
with 4 and 5 classes achieved worse results using the same statis-
tical procedure. Take into account that the classification in 3 clas-
ses (efficient, intermediate and inefficient APS) is the best, all the
original farms (1617) inherit the class of the corresponding. In
consequence, all the 1617 farms are described by their socio-eco-
nomic variables and belong to a specific efficiency-based class.
The problem that arises is the identification of the class (classifi-
cation output) taking the socio-economic variables as the input
variables (classification inputs: number of crops, costs and
V. Coeff. (%) Skewness Kurtosis Min. Max.

459 20.02 489.27 0 50
196 6.40 66.12 0 50

1817 35.40 1345.78 0 50
844 14.22 235.90 0 50

60 1.84 3.65 1 7
568 11.32 153.25 0 50
216 4.42 25.62 0 50
310 7.13 69.94 0 50
266 7.05 69.19 0 50
641 17.37 363.52 0 50
632 21.82 601.70 0 50
376 13.61 295.56 0 50
422 9.65 133.24 0 50
353 14.35 260.32 0 50
383 7.16 64.39 0 50
340 6.85 58.77 0 50
839 19.03 416.95 0 50



Table 2
Basic statistics on probabilities of being weakly efficient and efficient (frequency
analysis carried out on efficiency scores obtained using the MC-DEA model for 65
agrarian productive strategies).

Cluster 1 Cluster 2 Cluster 3

Weak Eff. Efficient Weak Eff. Efficient Weak Eff. Efficient

Min. 0.17 0.55 0.02 0.74 0.03 0.42
Max. 0.42 0.77 0.20 0.97 0.06 0.70
Mean 0.26 0.69 0.11 0.84 0.13 0.59
Median 0.24 0.71 0.10 0.84 0.13 0.60
SD 0.06 0.07 0.05 0.06 0.06 0.09

SD: Standard Deviation.

Table 3
Comparison with other statistical and artificial intelligence methods.

Methodology CG (%) MSG (%)

OS 63.09 ± 5.85 33.27 ± 15.28
TMNN 65.22 ± 6.28 28.42 ± 15.03
SOS 63.95 ± 5.40 34.65 ± 12.29

HMLP 74.67 ± 5.54 18.19 ± 12.64
DSHMLP 72.63 ± 2.86 35.00 ± 14.14

The best result is in bold face and the second best result in italics.
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revenues, Table 1) in a non-balanced database with 1617
observations – agrarian enterprises.
3.2. Experimental design

As it was mentioned in Section 3.1.2, the proposed classification
methodologies are used to identify the efficiency-based class (effi-
cient, intermediate and inefficient) of 1617 farms using as classifi-
cation inputs their socio-economic variables (see Table 1). The
dataset has been included on a public website.1

The experimental design was conducted using a 10-fold cross
validation stratified by APS, with 3 repetitions per each fold. The
performance of each method has been evaluated using the correct
classification rate (CG) and the Minimun Sensitivity (MSG) value for
the generalization set, i.e. the accuracy for the class that had the
worst classification.

The parameter values used in the hybrid techniques proposed
were the following: we have done a simple linear rescaling of the
input variables in the interval [�2,2], X�i being the transformed
variables. The connection between hidden and output layer are ini-
tialized in the [�5,5] interval. The maximum and minimum num-
ber of sigmoidal units in the hidden layer is in the interval [10,20].

The size of the population is N = 100. For the structural muta-
tion, the number of nodes that can be added or removed is within
the [1,2] interval, and the number of connections to add or delete
in the hidden and the output layer during structural mutations is
within the [1,7] interval.

The DSHMLP method is compared to different algorithms:

� The HMLP method (detailed in Section 2.4).
� Specific methods for imbalanced data proposed in Zhou and Liu

(2006):
– The OverSampling (OS) algorithm. This method duplicates

higher-cost training examples until the appearances of dif-
ferent training examples are proportional to their costs.

– The SmoteOverSampling (SOS) algorithm. Implementation of
the SMOTE algorithm in the preprocessing stage to balance
in part the datasets. Then, the neural network is trained with
the modified dataset.

– The ThresholdMovNN (TMNN) algorithm. This method
moves the output threshold toward inexpensive classes such
that examples with higher costs become harder to be
misclassified.

These methods have been selected due to their similarities to
the model we have proposed. The first two techniques modify
the distribution of the training dataset so that the costs of the
examples are conveyed explicitly in the appearance of the exam-
ples. These methods use Multilayer Perceptron Neural Networks
1 http://www.uco.es/grupos/ayrna/index.php?lang=en (‘‘Datasets’’ section).
(MLPs) as the base classifier, and the model is trained by the RProp
algorithm.

The HMLP algorithm was implemented in JAVA. For the
DSHMLP methods, the HMLP algorithm was modified slightly,
applying over-sampling procedures. We also used CSNN (Zhou &
Liu, 2006) software package2 to obtain the results in the OS, Smot-
eOS and TMNN methods.
4. Results

A comparison has been made of the DSHMLP method with the
well known classification techniques given in Section 3.2. Table 3
shows the results obtained with the different techniques tested.
A descriptive analysis of the results leads to the following remarks:
the DSHMLP method obtained the best result in terms of MSG and
the second best result in CG comparing over all techniques.

Fig. 5(a) and (b) show the boxplots obtained with the results of
the different algorithms in CG and MSG. Boxplots depict groups of
algorithms results through the smallest observation, lower quar-
tile, median, upper quartile and largest observation. As we can
see in Fig. 5(a) and (b), in CG, the DSHMLP method generated the
lowest degree of dispersion of results obtained, as shown by stan-
dard deviation values (2.86 for CG, see Table 3).

To ascertain the statistical significance of the differences be-
tween the means (in CG and MSG for each stochastic methodology:
OS, TMNN, SOS, HMLP and DSHMLP), the non-parametric Kol-
mogorov–Smirnov test (K–S test) with a = 0.05, was used to evalu-
ate if the CG and MSG values followed normal distribution. As can be
seen from the results in Table 4, normal distribution can be as-
sumed because the critical levels, p-values, were higher than 0.05
in all cases. In order to determine the best methodology (in the
sense of its influence on the accuracy and on the minimum sensi-
tivity in the generalization set, CG and MSG), an ANOVA statistical
method test was carried out. The results of the ANOVA analysis
for CG and MSG values show that the effect of the methodology
was statistically significant at a signification level of 5% (see first
row of Table 5). Once this test guaranteed that there were signifi-
cant differences between the results found by different methods,
we performed a multiple comparison test on the CG and MSG values
in order to establish an order among the different methods (see Ta-
ble 5). First, we carried out a Levene test (Miller, 1996) to evaluate
the equality of variances. Then, a Tukey test (Miller, 1981) was per-
formed, because the variances were equal (either for CG or MSG), in
order to rank the different methods. Our aim was to find the meth-
odology that performed (in CG and/or MSG) significantly better than
the other methodologies.

The two best results in CG were achieved by the DSHMLP and
HMLP methods. The procedure recommended by this paper is the
DSHMLP method, because using a t-test in average CG, did not pro-
duce significant differences compared to the HMLP method (for
a = 0.05), while in average MSG, using another t-test, the DSHMLP
2 http://lamda.nju.edu.cn/datacode/CSNN.htm.

http://www.uco.es/grupos/ayrna/index.php?lang=en
http://lamda.nju.edu.cn/datacode/CSNN.htm


Fig. 5. Box plots: Results of the OS, TMNN, SOS, HMLP and DSHMLP methods.

Table 4
p-values of the Kolmogorov–Smirnov test applied for the generalization the normality
of the distributions of the generalization correct classification rate and minimum
sensitivity (CG (%) and MSG (%), respectively) of the models obtained comparing
different methods.

Test variable Kolmogorov–Smirnov test

OS TMNN SOS HMLP DSHMLP

CG 0.504 1.000 0.892 0.995 0.910
MSG 0.801 0.988 0.273 0.963 0.065

Table 5
p-values of the Snedecor’s F ANOVA I test, ordered mean for the statistical multiple
comparison Tukey test and t-test when considering the generalization correct
classification rate and minimum sensitivity (CG (%) and MSG (%), respectively) of the
models obtained comparing different methods.

Test variable

CG MSG

F (p-values) 0.000a 0.000a

Ranking of averages lHMLP P lDSHMLP > lTMNN lDSHMLP P lSOS P lOS

lTMNN P lSOS P lOS lOS P lTMNN > lHMLP

lDSHMLP > lHMLP
a

lA P lB: A yields better results than B, but the differences are not significant.
lA > lB: A yields better results than B with significant differences.
The binary relation P is not transitive.

a Significant differences were found (a = 0.05).
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method obtained significant differences with respect to the HMLP
method (for a = 0.05, see third row of Table 5).
5. Conclusions

This paper combines three powerful techniques used in ma-
chine learning research: resampling procedures, evolutionary algo-
rithms and neural networks. The approach carries out an adequate
combination of the three elements to resolve the problem of clas-
sifying real farms. The Relative Technical Efficiency (RTE) of each
farm has been determined by the Monte Carlo Data Envelopment
Analysis (MC-DEA) model. It is important to note that the classifi-
cation problem considered is within the scope of imbalanced mul-
ti-classification problems.

In general, the results obtained show that the approaches pro-
posed, which are based on MLPs trained with HAs are robust en-
ough to tackle the multi-classification of RTE in real farms, and
obtain better results than the majority of existing alternative
methods.

There are two future research directions suggested by this
study: (i) a multi-objective approach considering both MS and C
functions could be carried out; and (ii), since the (MS,C) measures
are independent of the evolutionary algorithm and of the base clas-
sifier used, other types of base classifiers and evolutionary algo-
rithms could be considered.
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