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In the classification problem field, we often encounter many real application areas in which the data do
not have an equitable distribution among the different classes of the problem. In such cases, we are deal-
ing with the so-called imbalanced data sets. This scenario has significant interest since standard classifi-
ers are often biased towards the majority classes, whereas the minority ones tend to have a higher reward
as they usually define the concepts of interest from the learning point of view.

The aim of this paper is to analyse the performance of CO2RBFN, a evolutionary cooperative–compet-
itive model for the design of radial-basis function networks applied to classification problems on imbal-
anced domains, and to study its cooperation with a well-known pre-processing method, the ‘‘synthetic
minority over-sampling technique”. The good performance of CO2RBFN is shown through an experimen-
tal study carried out on a large collection of imbalanced data sets where we compare, by means of a
proper statistical study, the behaviour of our model with many representative neural networks algo-
rithms, the C4.5 decision tree and a hierarchical fuzzy rule-based classification system.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

Radial-basis function networks (RBFNs) are one of the most
important artificial neural network paradigms in the field of
machine learning. An RBFN is a feed-forward artificial neural net-
work with a single layer of hidden units, called radial-basis func-
tions (RBFs) (Broomhead and Lowe, 1988; Moody and Darken,
1989). RBFNs have important features such as: a simple topological
structure; the possibility of extracting rules (Jang and Sun, 1993;
Jin and Sendhoff, 2003); a universal approximation capability (Park
and Sandberg, 1991; Park and Sandberg, 1993); and each neuron/
RBF has a characteristic locally-tuned response that depends on
its centre and its width (radius).

One important paradigm for RBFN design is evolutionary com-
putation (Holland, 1975; Goldberg, 1989; Bäck et al., 1997), which
uses natural evolution and stochastic search to design optimization
algorithms. More precisely, evolutionary computation maintains a
population of individuals which evolves according to the operators
as mutation, recombination or selection, and each individual in the
population receives a measure of its fitness in the environment.

CO2RBFN (Pérez-Godoy et al., 2010) is a hybrid cooperative–
competitive evolutionary method for the design of RBFNs. In this
ll rights reserved.
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environment an RBF represents an individual and, therefore, each
RBF competes for survival and all the RBFs in the population coop-
erate towards a definite solution. The key matter of this model is
the computation of the credit assignment (fitness) of each individ-
ual. In this manner, three parameters have been defined in order to
measure the role of an RBF: its contribution to the output of the
network, the error and the overlapping of the neuron. The decision
for the application of the different evolutionary operators to the
RBFs is defined using a fuzzy rule base system.

The overall efficiency of RBFNs has been proved in many
areas like pattern classification (Buchtala et al., 2005), function
approximation (Park and Sandberg, 1991), time-series prediction
(Whitehead and Choate, 1996) and multiple specific applications
such as credit assessment (Lacerda et al., 2005), face recognition
(Er et al., 2005), image recognition (Siddiqui et al., 2009), process
control (Huang et al., 2008), medical diagnosis (Maglogiannis
et al., 2008; Marcos et al., 2008), financial time-series forecasting
(Sun et al., 2005) and intrusion detection (Zhang et al., 2005),
among others. In most of these areas, the data sets have a com-
mon and usual characteristic: they are imbalanced data sets
(Chawla et al., 2004).

The problem of imbalanced data sets in classification (Chawla
et al., 2004) occurs when the number of instances of one class is
much lower than the instances of the other class(es). Since stan-
dard learning algorithms are developed to maximise the standard
accuracy rate, which is independent of the class distribution, in this
context this causes a bias towards the majority class in the training
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of classifiers and results in a lower sensitivity in detecting the
minority class examples.

A large number of approaches have been previously proposed to
deal with this problem, which can be categorised into two groups:
the internal approaches which create new algorithms or modify
existing ones to take the class-imbalance problem into consider-
ation (Barandela et al., 2003; Xu et al., 2007) and external ap-
proaches which pre-process the data in order to diminish the
effect caused by their class imbalance (Batista et al., 2004; Esta-
brooks et al., 2004). The internal approaches have the disadvantage
of being algorithm specific, whereas external approaches are inde-
pendent of the classifier used and are, for this reason, more
versatile.

In this paper, CO2RBFN is applied to solving imbalanced classifi-
cation problems (data sets obtained from the UCI repository
(Asuncion and Newman, 2007)). According to the previous fact,
we study the effect of a pre-processing stage (applying the ‘‘syn-
thetic minority over-sampling technique” (SMOTE) Chawla et al.,
2002) in the performance of CO2RBFN by contrasting the results ob-
tained using the original data sets. Furthermore, we extend our
experimental study with some well-known classification models
for comparison, including many artificial neural networks algo-
rithms, the C4.5 decision tree (Quilan, 1993) and a hierarchical fuzzy
rule-based classification system (HFRBCS) (Fernández et al., 2009).
Furthermore, our experimental results are supported by means of
a strong statistical study using non-parametric tests as stated in
(Demšar, 2006; García and Herrera, 2008; García et al., 2009).

In order to do this, this paper is arranged as follows: in Section 2
a review of the RBFN design is detailed. In Section 3 we introduce
the problem of imbalanced data sets, describing its features, the
SMOTE pre-processing technique used to deal with this problem,
the specific evaluation metrics for this scenario and a revision of
the application of the RBFN to the imbalanced problem. Then, Sec-
tion 4 presents in detail the CO2RBFN approach. Next, in Section 5
we introduce the experimental framework with the collection of
data sets used in the empirical study and all the parameters for
CO2RBFN and the different algorithms of comparison. All the
experimental results and the analysis of the behaviour of CO2RBFN
are presented in Section 6, whereas the concluding remarks and fu-
ture work are presented in Section 7. Finally, we include an appen-
dix with the complete tables of results and a brief description of
the statistical tests used for the comparative study.
2. Design of RBFNs

An RBFN is a feed-forward neural network with three layers: an
input layer with n nodes, a hidden layer with m neurons or RBFs,
and an output layer with one or several nodes (Fig. 1).
Fig. 1. RBFN Topology of RBFN.
Each input node corresponds to a feature of the input pattern.
The m neurons of the hidden layer are activated by a radially-
symmetric basis function, /i: Rn ? R, which can be defined in sev-
eral ways (Rojas et al., 1997). The Gaussian function is the most
widely used: /ið~xÞ ¼ /iðe�ðk~x�~cik=diÞ2 Þ, where ~ci 2 Rn is the centre of
basis function /i, di 2 R is the width (radius), and kk is typically
the Euclidean norm on Rn. This expression is the one used in this
paper as the RBF. The output nodes implement the function in
Eq. (1):

f ð~xÞ ¼
Xm

i¼1

wij/ið~xÞ ð1Þ

The output of one basis function will be high when the input
vector and the centre of this basis function are closer, always
taking into account the value of the radius. The weights wij show
the contribution of an RBF to the respective output node, and
therefore the output nodes implement the weighted sum of
RBF outputs.

The traditional RBFN learning procedure has two stages: first,
unsupervised learning of centres and widths is used, and finally
output weights are established by means of supervised learning.
Clustering techniques (Pedrycz, 1998) are normally used to ad-
just the centres. Regarding the widths, they may all be given
the same value, may reflect the width of the previously calcu-
lated clusters (i.e. RBFs), or may be established as the average
distance between RBFs, among other possibilities. In order to ob-
tain the weights in the second stage, algorithms such as least
mean square (LMS) (Widrow and Lehr, 1990) or singular value
decomposition (widely known as SVD) (Golub and Van Loan,
1996) can be used.

As well as this typical methodology, different design strategies
for RBFN design can be found in the literature. Due to the fact that
RBFNs were initially used for function approximation, most of the
methods are based on traditional optimization techniques such
as regularization (Orr, 1995), orthogonalization of regressors
(Chen et al., 1991), gradient-based (Neruda and Kudová, 2005), or
Levenberg–Marquardt (Ampazis and Perantonis, 2002). These
techniques can be used to decide the RBFs to aggregate or elimi-
nate and may be considered as forward or backward selection
methods (Peng et al., 2006).

Another important paradigm for RBFN design is evolutionary
computation (Holland, 1975; Goldberg, 1989; Bäck et al., 1997), a
general stochastic optimization framework inspired by natural
evolution. In any evolutionary algorithm, and therefore in those
for the evolutionary design of RBFNs, two main aspects must be
considered: what is codified in an individual and the way to com-
pute the goodness of this individual.

Regarding the first aspect, in the specialised literature most of
the evolutionary proposals for the design of RBFNs (Harpham
et al., 2004; Rivas et al., 2004; Lacerda et al., 2005) codify a com-
plete RBFN by means of an individual, and the population of RBFNs
evolves through different operators. This is known as the Pitts-
burgh representation scheme. In this paradigm the fitness of an
individual usually is the classification rate of the model codified.

Nevertheless, according to Potter and De Jong (2000) evolution-
ary computation has some difficulties in solving certain types of
problems, especially when an individual represents a complete
solution composed of independent subcomponents. An alternative
to the classical (Pittsburgh) approach is the cooperative–competi-
tive evolutionary strategy (Whitehead and Choate, 1996; Potter
and De Jong, 2000), which provides a framework where an individ-
ual of the population represents only a part of the solution, evolv-
ing in parallel, competing to survive but at the same time
cooperating in order to find a common solution (the complete
RBFN).
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Regarding this approach, two main problems must be
addressed:

1. The credit assignment, or the fitness allocated to each individ-
ual according to its contribution to the final solution.

2. The mechanism used in order to maintain diversity among indi-
viduals of the population.

The cooperative–competitive approach reduces the search
space for the GA. The representation of the solution with an ade-
quate credit assignment function is crucial to obtain an RBFN com-
posed of a small number of accurate RBFs which do not overlap and
which represent the information of the data examples.

In the literature there are some proposals concerning the design
of RBFNs based on cooperative–competitive evolutionary strate-
gies (Whitehead and Choate, 1996; Topchy et al., 1997; Rivera
et al., 2007; Li et al., 2008). The most traditional one has been pro-
posed by Whitehead and Choate (1996) where an individual repre-
sents an RBF and the population the whole network. Individual
credit assignment is defined depending on the weight of the RBF.
In the same way, in the algorithm described in (Topchy et al.,
1997) an individual is an RBF and credit assignment is calculated
according to the efficiency of the RBF or its contribution to the cor-
rect output of the network. In (Rivera et al., 2007) an individual
represents an RBF and the method uses a credit assignment func-
tion witch combines concepts such as cooperation, specialization
and niching. In (Li et al., 2008), a co-evolutionary RBFN design
method is proposed, where interacting co-adapted subpopulations
evolve independently. Each individual in a population represents a
particular component (group of RBFs) of the RBFN. The fitness of an
individual from a particular subpopulation is assessed by associat-
ing it with representatives from other subpopulations.

In this paper we make use of the CO2RBFN algorithm, which is
also a cooperative–competitive method for the design of RBFNs
that has been developed by the authors and applied to standard
classification problems in (Pérez-Godoy et al. (2010)).
3. Imbalanced data sets in classification

In this section, we first introduce the problem of imbalanced
data sets. Then, we describe the pre-processing technique we have
applied in order to deal with the imbalanced data sets: the SMOTE
algorithm (Chawla et al., 2002). Afterwards, we will present the
evaluation metrics for this type of classification problem. Finally
a revision of RBFNs in imbalanced problems is shown.
Small Disjuncts

(a) (b)

Fig. 2. Example of the imbalance between classes: (a) small disjuncts, (b)
overlapping between classes.
3.1. The problem of imbalanced data sets

In some classification problems, the number of instances of
every class is different. Particularly, in the binary case, the class-
imbalance problem occurs when one class is represented by a large
number of examples, whereas the other is represented by only a
few (Chawla et al., 2004; Sun et al., 2009; He and Garcia, 2009).

The problem of imbalanced data sets is extremely significant
(Yang and Wu, 2006) because it is implicit in most real world
applications, such as satellite image classification (Suresh et al.,
2008), risk management (Huang et al., 2006), optical remote-sens-
ing data (Williams et al., 2009) and especially in medical applica-
tions (Kilic et al., 2007; Mazurowski et al., 2008; Peng and King,
2008). It is important to remark that usually the minority class rep-
resents the concept of interest, for example patients with illness in
a medical diagnosis problem; whereas the other class represents
the counterpart of that concept (healthy patients).

Standard classifier algorithms usually have a bias towards the
majority class, since the rules which predict the higher number
of examples are positively weighted during the learning process
in favour of the standard accuracy rate metric, which does not take
into account the class distribution of the data. Consequently, the
instances belonging to the minority class are misclassified more of-
ten than those belonging to the majority class.

Another important issue of this problem are the small disjuncts
that can be found in the data set (Weiss and Provost, 2003), which
are regions of few examples of one class surrounded by many
examples from the opposite class, and the difficulty of most learn-
ing algorithms in detecting these areas (Orriols-Puig et al., 2009;
Orriols-Puig and Bernadó-Mansilla, 2009). In fact, learning algo-
rithms try to benefit those models with a higher degree of coverage
and these small disjuncts imply the application of very specific
models which are discarded in favour or more general ones.

Furthermore, another handicap of imbalanced data sets, which
is related to the presence of small disjuncts, is the overlapping be-
tween the examples of the positive and the negative class (García
et al., 2008), in which the minority class examples can be simply
treated as noise and ignored by the learning algorithm. These phe-
nomena are depicted in Fig. 2(a) and (b) respectively.

As we stated in the introduction of the paper, a large number of
approaches have previously been proposed for dealing with the
class-imbalance problem. These approaches can be categorised
into two groups: the internal approaches which create new algo-
rithms or modify existing ones to take the class-imbalance prob-
lem into consideration (Barandela et al., 2003; Wu and Chang,
2005; Xu et al., 2007) and the external approaches which pre-pro-
cess the data in order to diminish the effects of their class imbal-
ance (Batista et al., 2004; Estabrooks et al., 2004). Furthermore,
cost-sensitive learning solutions incorporating both the data and
algorithmic level approaches assume higher misclassification costs
with samples in the minority class and seek to minimise the high
cost errors (Domingos, 1999; Zhou and Liu, 2006; Sun et al., 2007).

The great advantage of the external approaches is that they are
more versatile, since their use is independent of the classifier se-
lected. Furthermore, we may pre-process all data sets beforehand
in order to use them to train different classifiers. In this manner,
the computation time needed to prepare the data is lower.
3.2. Pre-processing imbalanced data sets. The SMOTE algorithm

As mentioned before, applying a pre-processing step in order to
balance the class distribution is a positive solution to the imbal-
anced data set problem (Batista et al., 2004). Specifically, in this
work we have chosen an over-sampling method which is widely-
used in this area: the SMOTE algorithm (Chawla et al., 2002).

With this approach, the positive class is over-sampled by taking
each minority class sample and introducing synthetic examples
along the line segments joining any/all of the k minority class
nearest neighbours. Depending upon the amount of over-sampling



Table 1
Confusion matrix for a two-class problem.

Positive prediction Negative prediction

Positive class True positive (TP) False negative (FN)
Negative class False positive (FP) True negative (TN)
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required, neighbours from the k nearest neighbours are randomly
chosen. This process is illustrated in Fig. 3, where xi is the selected
point, xi1 to xi4 are some selected nearest neighbours and r1 to r4

the synthetic data points created by the randomised interpolation.
The implementation of this work uses only one nearest neighbour
with the Euclidean distance, and balances both classes to 50%
distribution.

Synthetic samples are generated in the following way: take the
difference between the feature vector (sample) under consider-
ation and its nearest neighbour. Multiply this difference by a ran-
dom number between 0 and 1, and add it to the feature vector
under consideration. This causes the selection of a random point
along the line segment between two specific features. This ap-
proach effectively forces the decision region of the minority class
to become more general. An example is detailed in Fig. 4.

In short, the main idea is to form new minority class examples
by interpolating between several minority class examples that lie
together. In contrast with the common replication techniques
(for example random over-sampling), in which the decision region
usually become more specific, with SMOTE the overfitting problem
is somehow avoided by causing the decision boundaries for the
minority class to be larger and to spread further into the majority
class space, since it provides related minority class samples to
learn from. Specifically, selecting a small k-value could also avoid
the risk of including some noise in the data.

3.3. Evaluation in imbalanced domains

The measures of the quality of classification are defined from a
confusion matrix (shown in Table 1) which records correctly and
incorrectly recognised examples for each class.

The most used empirical measure, accuracy rate (2), does not
distinguish between the number of correct labels of different clas-
ses, which in the context of imbalanced problems may lead to erro-
neous conclusions. For example a classifier that obtains an
accuracy of 99% in a data set with a distribution of 1:100, might
not be accurate if it does not cover correctly any minority class
instance:
Fig. 3. An illustration of how to create the synthetic data points in the SMOTE
algorithm.

Fig. 4. Example of the S
Acc ¼ TPþ TN
TPþ FNþ FPþ TN

: ð2Þ

Because of this, instead of using accuracy, better suited metrics
are considered. Two common measures, sensitivity and specificity
(Eqs. (3) and (4)), approximate the probability of the positive (neg-
ative) label being true. In other words, they assess the effectiveness
of the algorithm on a single class:

sensitivity ¼ TP
TPþ FN

; ð3Þ

specificity ¼ TN
FPþ TN

: ð4Þ

The metric used in this work is the geometric mean of the true
rates (Barandela et al., 2003), which can be defined as

GM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP
TPþ FN

� TN
FPþ TN

r
: ð5Þ

This metric attempts to maximise the accuracy of each one of
the two classes with a good balance. It is a performance metric that
links both objectives.
3.4. RBFNs in imbalanced problems

As we stated before, there are both internal and external solu-
tions to the problem of imbalanced data sets in classification. Spe-
cifically, in the framework of RBFNs we can some find examples of
these approaches.

Regarding the internal approaches, they can include the use of a
cost function in the training process to compensate class imbal-
ance, and strategies to reduce the impact of the cost function in
data probability distribution (Alejo et al., 2007).

There are also external approaches for solving this problem. In
(Al-Haddad et al., 2000) different studies have been done to assess
the effect of the size of the training data set on the accuracy for a
microalgae problem. In (Murhphey and Guo, 2004) the random
over-sampling method and snowball training are used as pre-pro-
cessing method and the results are evaluated with three different
artificial neural network architectures: multilayer back propaga-
tion network, RBFNs and Fuzzy ARTMAP. In (Padmaja et al.,
2007), the over-sampling method SMOTE, has been used with
RBFNs showing good behaviour. In (Li et al., 2006) an undersam-
pling method is used to remove some training majority class
patterns, before applying the RBFN. Padmaja et al. (2008) proposes
a majority-filter based minority prediction (MFMP) unsupervised
MOTE application.
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approach for selecting samples for supervised learners, such as:
decision trees, k-nearest neighbour, Naïve Bayes and RBFNs.

Wu and Chow (2004), Rui and Minghu (2008) are examples of
imbalanced problems where different neural networks models,
RBFNs included, are used without a pre-processing phase. In (Zhao,
2009) a novel modular neural network is proposed to solve multi-
class problems with imbalanced training sets, in which the results
are compared with a RBFN model.
Fig. 5. Main steps of CO2RBFN.
4. CO2RBFN for imbalanced data sets

CO2RBFN, is an evolutionary cooperative–competitive hybrid
algorithm whose objective is to design simple and accurate RBFNs.
In this paper the algorithm is applied to imbalanced data set
classification.

A simple RBFN is composed of a low number of RBFs, which
represent accurately the knowledge about the patterns of their
environment and which are correctly located in the space of
patterns (with minimum overlapping). Also, the RBFs must
work well together in order to obtain an RBFN with adequate
generalization.

In order to obtain simple and accurate RBFNs, CO2RBFN follows
the evolutionary cooperative–competitive strategy, where each
individual of the population represents an RBF (Gaussian function
will be considered as RBF) and the entire population is responsible
for the definite solution. This paradigm provides a framework
where an individual of the population represents only a part of
the solution, competing to survive (since it will be eliminated if
its performance is poor) but at the same time cooperating in order
to build the whole RBFN, which adequately represents the knowl-
edge about the problem and achieves good generalization for new
patterns. In this scenario, the local operation (RBFs with local re-
sponse) and the representation of the majority of the examples
(by means of any RBF) is reinforced, and the overlapping among
RBFs is minimised. These design guidelines of CO2RBFN improve
the interpretability of the RBFN obtained.

This evolutionary cooperative–competitive paradigm is rein-
forced with the remaining design components: fitness function,
evolutionary operators and the fuzzy rule base system (FRBS),
which decides the probability of applying operators.

In this environment, in which the final solution depends on the
behaviour of many components, the fitness of each individual is
known as credit assignment. In order to measure the credit assign-
ment of an individual, three factors have been used to evaluate the
role of each RBF in the network (error, contribution and overlap-
ping). These factors reinforce: the individual quality of RBFs (calcu-
lating the local error inside the radius of each RBF), their generality
(measured by the contribution which promotes RBFs with a high
number of patterns inside its radius), and the adequate location
of the RBFs in the space of patterns (measured by the overlapping).
Together these three factors enhance the individual role of RBFs
and their cooperative work toward building an accurate and simple
network. It can be highlighted that the last two factors take into ac-
count all the patterns and the behaviour of the rest of the RBFs, and
this can improve the efficiency of the algorithm in an imbalanced
classification scenario. In this way, the fitness function of CO2RBFN
combines concepts such as cooperation, specialization and niching
(Buchtala et al., 2005).

There are four evolutionary operators that can be applied to an
RBF: an operator that eliminates the RBF, two operators that mu-
tate the RBF, and finally an operator that maintains the RBF param-
eters in order to explore and exploit the search space and to
preserve the best RBF, respectively.

The application of the operators is determined by a FRBS. The in-
puts of this system are the three parameters used for credit assign-
ment and the outputs are the operators’ application probability. To
design the set of rules we must take into account the fact that an
RBF is worse if its contribution is low, its error is high and its over-
lapping is also high, otherwise it is better. In this way the probabil-
ity of eliminating an RBF is high when this RBF is worse and so on.

The main steps of CO2RBFN, explained in the following subsec-
tions, are shown in the pseudocode in Fig. 5.

4.1. RBFN initialization

To define the initial network, with a number of RBFs established
by the size of the population, a simple process is used: a specified
number, m, of neurons (i.e. the size of population) is randomly allo-
cated among the different classes of the training set. To do this,
each RBF centre, ~ci, is randomly established to a pattern of the
training set, taking into account that the RBFs must be distributed
equally among the different classes. The RBF widths, di, will be set
to half the average distance between the centres. Finally, the RBF
weights, wij, are set to zero.

4.2. RBFN training

During this stage, RBF weights are trained. The LMS algorithm
(Widrow and Lehr, 1990) has been used to calculate the RBF
weights. This technique exploits the local information that can be
obtained from the behaviour of the RBFs. The Eq. (6) shows the up-
date of the weights:

�wkþ1 ¼ �wk þ a
ek�xk

�x2
k

�� �� ; ð6Þ

where k is the number of iteration, �wkþ1 is the next value of the
weight vector, �wk is the present value of the weight vector and �xk

is the value of the actual input pattern vector. The present linear er-
ror, ek, is defined as the difference between the desired output and
the output network before adaptation. The a value is the speed of
learning, it measures the size of the adjustment to be made. The
choice of a controls stability and speed of convergence.

4.3. RBF evaluation

A credit assignment mechanism is required in order to evaluate
the role of each basis function in the cooperative–competitive
environment.

For an RBF /i, three parameters, ai, ei and oi are defined:

� The contribution, ai, of the RBF /i, i = 1, . . .,m, is determined by
considering the weight, wi, and the number of patterns of the
training set inside its width, npii. An RBF with a low weight
and few patterns inside its width will have a low contribution:
ai ¼
jwij if npii > q

jwij � npii=qð Þ otherwise

�
ð7Þ

where q is the average of the npii values minus the standard
deviation of the npii values.
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� The error measure, ei, for each RBF /i, is obtained by counting
the wrongly classified patterns inside its radius:
ei ¼
npibci

npii
; ð8Þ

where npibci and npii are the number of wrongly classified pat-
terns and the number of all patterns inside the RBF width
respectively. It must be noted that this error measure does not
consider imbalance among classes.
� The overlapping of the RBF /i and the other RBFs is quantified

by using the parameter oi. This parameter is calculated by tak-
ing into account the fitness sharing (Goldberg, 1989) methodol-
ogy, whose aim is to maintain diversity in the population. This
factor is expressed as
oi ¼
Xm

j¼1

oij oij ¼
1� k/i � /jk=di
� �

if /i � /j

�� �� < di

0 otherwise

(

ð9Þ
Table 2
Fuzzy rule base representing expert knowledge in the design of RBFNs.

Antecedents Consequents
where oij measures the overlapping of the RBF /i and /j j = 1, . . .,m.

4.4. Applying operators to RBFs

In this algorithm four operators have been defined:

� Operator Remove: eliminates an RBF.
� Operator Random Mutation: modifies the centre and width of an

RBF. The width is altered with a probability inversely propor-
tional to the number of features of the classification problem
(n), in a percentage below 50% of the old width. The coordinates
of the centre are modified as follows: if the coordinate is a real
value, it is increased or decreased in a percentage below 50% of
the width. If the coordinate is a nominal value, it mutates to
another one, among all the possible values of the attribute or
feature, with a probability inversely proportional to the HVDM
(Wilson and Martinez, 1997) distance from the original value.
The number of coordinates to be mutated is randomly obtained
and is a number below 25% of the total number of features.
� Operator Biased Mutation: modifies the width and all coordi-

nates of the centre using local information of the RBF environ-
ment. A clustering-based technique for training centres has
been used. In this way the RBF centre,~ci, is modified as follows:
va ve vo premove prm pbm pnull

R1 L M–H M–H L L
R2 M M–L M–H M–L M–L
R3 H L M–H M–H M–H
R4 L L M–H M–H M–H
R5 M M–L M–H M–L M–L
R6 H M–H M–H L L
R7 L L M–H M–H M–H
R8 M M–L M–H M–L M–L
R9 H M–H M–H L L
c0ij ¼ cij � h 8j ¼ 1; . . . ;n: ð10Þ

The increase or decrease of the old centre is decided by means of
a random number h (h 6 0.5 � di). The centre is varied in order to
approximate it to the average of the patterns belonging to the
RBF class and inside its RBF width. The objective of the width
training is that most of the patterns belonging to the RBF class
will be inside the RBF width. In this way the RBF width is mod-
ified as follows:
Fig. 6. (a) input variables membership functions for th
d0 ¼ d� h if u 6 D

d0 ¼ dþ h otherwise

(
D ¼ npnci

npci
A ¼ npci2

npnci2
; ð11Þ

where h is a random number (h 6 0.5 � di); u is a random number
(u 6 D + A); npnci is the number of patterns not belonging to the
RBF class inside the RBF width; npci is the number of patterns
belonging to the RBF class inside the RBF width; npci2, is the
number of patterns belonging to the RBF class inside twice RBF
width and npnci2, is the number of patterns not belonging to
the RBF class inside twice RBF width.
� Operator Null: in this case all the parameters of the RBF are

maintained.

With these mutation operators CO2RBFN promotes an appropri-
ate balance between exploitation and exploration, which is a desir-
able feature in every evolutionary algorithm. Biased mutations use
local information from the RBF environment in order to achieve an
optimal adaptation. On the other hand, random mutations carry
out alterations that lead to the exploration of the environment
and thus avoid local optimums.

The operators are applied to the whole population of RBFs. The
probability for choosing an operator is determined by means of a
Mandani-type FRBS (Mandani and Assilian, 1975), which repre-
sents expert knowledge about the operator application in order
to obtain a simple and accurate RBFN.

The inputs of this system are parameters ai, ei and oi used for
defining the credit assignment of the RBF /i. These inputs are con-
sidered as linguistic variables vai, vei and voi. The outputs, premove,
prm, pbm and pnull, represent the probability of applying Remove,
Random Mutation, Biased Mutation and Null operators, respectively.
The number of linguistic labels has been empirically determined
and the fuzzy sets have been defined according to their meaning.
Fig. 6 shows the membership functions for the input and output
variables respectively. Table 2 shows the rule base used to relate
the described antecedents and consequents. In the table each
row represents one rule. For example, the interpretation of the first
rule is: If the contribution of an RBF is Low Then the probability of
applying the operator Remove is Medium–High, the probability of
e FRBS. (b) Output variables membership function.
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applying the operator Random Mutation is Medium–High, the
probability of applying the operator Biased Mutation is Low and
the probability of applying the operator null is Low.

The rule base represents expert knowledge, as mentioned, in
the design of RBFNs. It was developed taking into account the fact
that an RBF is worse if its contribution (ai) is low, its error (ei) is
high and its overlapping (oi) is also high. On the other hand, an
RBF is better when its contribution is high, its error is low and its
overlapping is also low. A worse RBF indicates that this neuron
has problems performing a good role in its environment and there-
fore important changes such as random mutations or even remov-
ing the RBF must be promoted. In these cases the probability of
applying the biased mutation operator and the null operator is
low. However, a better neuron implies that the RBF is working well
in its environment. In these situations exploitation is promoted by
increasing the probability of applying the biased mutation opera-
tor. The probability of maintaining the neuron with the same
parameters, applying the null operator, is also augmented. In these
cases the probability of removing the RBF will be low. The proba-
bility of applying random mutation is usually high in order to pro-
mote a parsimonious evolution. It can be highlighted that this rule
base represents general knowledge related to the design of RBFNs.
This generic rule base has been successfully applied to classifica-
tion problems (Pérez-Godoy et al., 2010).
Table 3
Description for imbalanced data sets.

Data sets #Ex. #Atts. Class (minority, majority)

Glass1 214 9 (build-win-non-float-proc, remainder)
Ecoli0vs1 220 7 (im, cp)
Wisconsin 683 9 (malignant, benign)
Pima 768 8 (tested-positive, tested-negative)
Iris0 150 4 (iris-setosa, remainder)
Glass0 214 9 (build-win-float-proc, remainder)
Yeast1 1484 8 (nuc, remainder)
Vehicle1 846 18 (saab, remainder)
Vehicle2 846 18 (bus, remainder)
Vehicle3 846 18 (opel, remainder)
Haberman 306 3 (die, survive)
Glass0123vs456 214 9 (non-window glass, remainder)
Vehicle0 846 18 (van, remainder)
Ecoli1 336 7 (im, remainder)
New-thyroid2 215 5 (hypo, remainder)
New-thyroid1 215 5 (hyper, remainder)
Ecoli2 336 7 (pp, remainder)
Segment0 2308 19 (brickface, remainder)
Glass6 214 9 (headlamps, remainder)
Yeast3 1484 8 (me3, remainder)
Ecoli3 336 7 (imU, remainder)
Page-blocks0 5472 10 (remainder, text)
Yeast2vs4 514 8 (cyt, me2)
Yeast05679vs4 528 8 (me2, mit, me3, exc, vac, erl)
Vowel0 988 13 (hid, remainder)
Glass016vs2 192 9 (ve-win-float-proc, build-win-float-proc, b
Glass2 214 9 (ve-win-float-proc, remainder)
Ecoli4 336 7 (om, remainder)
Yeast1vs7 459 8 (vac, nuc)
Shuttle0vs4 1829 9 (rad-flow, bypass)
Glass4 214 9 (containers, remainder)
Page-blocks13vs2 472 10 (graphic, horiz.line, picture)
Abalone9vs18 731 8 (18, 9)
Glass016vs5 184 9 (tableware, build-win-float-proc, build-win
Shuttle2vs4 129 9 (fpv Open, Bypass)
Yeast1458vs7 693 8 (vac, nuc, me2, me3, pox)
Glass5 214 9 (tableware, remainder)
Yeast2vs8 482 8 (pox, cyt)
Yeast4 1484 8 (me2, remainder)
Yeast1289vs7 947 8 (vac, nuc, cyt, pox, erl)
Yeast5 1484 8 (me1, remainder)
Ecoli0137vs26 281 7 (pp, imL, cp, im, imU, imS)
Yeast6 1484 8 (exc, remainder)
Abalone19 4174 8 (19, remainder)
4.5. Introduction of new RBFs

In this step of the algorithm, the eliminated RBFs are substi-
tuted by new RBFs. The new RBF is located in the centre of the area
with maximum error or in a randomly chosen pattern with a prob-
ability of 0.5, respectively.

In the first instance, the areas are defined as a set of neighbour-
ing patterns with a width equal to the average of the width of the
RBF. The width of the new RBF will be set to the average of the RBFs
in the population plus half of the minimum distance to the nearest
RBF. Its weights are set to zero.

If it is chosen randomly, the RBF is located in the first pattern
found outside of any RBF width. The width of the new RBF is set
to the average of the RBFs in the population, and its weights are
set to zero.

4.6. Replacement strategy

After applying the mutation operators, new RBFs appear. The
algorithm uses the replacement scheme to determine which new
RBFs will be included in the new population. To do so, the role of
the mutated RBF in the network is compared with the original
one to determine the RBF with the best behaviour in order to in-
clude it in the population.
% Class (minority, majority) IR

(35.51, 64.49) 1.82
(35.00, 65.00) 1.86
(35.00, 65.00) 1.86
(34.84, 66.16) 1.90
(33.33, 66.67) 2.00
(32.71, 67.29) 2.06
(28.91, 71.09) 2.46
(28.37, 71.63) 2.52
(28.37, 71.63) 2.52
(28.37, 71.63) 2.52
(27.42, 73.58) 2.68
(23.83, 76.17) 3.19
(23.64, 76.36) 3.23
(22.92, 77.08) 3.36
(16.89, 83.11) 4.92
(16.28, 83.72) 5.14
(15.48, 84.52) 5.46
(14.26, 85.74) 6.01
(13.55, 86.45) 6.38
(10.98, 89.02) 8.11
(10.88, 89.12) 8.19
(10.23, 89.77) 8.77
(9.92, 90.08) 9.08
(9.66, 90.34) 9.35
(9.01, 90.99) 10.10

uild-win-non-float-proc, headlamps) (8.89, 91.11) 10.29
(8.78, 91.22) 10.39
(6.74, 93.26) 13.84
(6.72, 93.28) 13.87
(6.72, 93.28) 13.87
(6.07, 93.93) 15.47
(5.93, 94.07) 15.85
(5.65, 94.25) 16.68

-non-float-proc, headlamps) (4.89, 95.11) 19.44
(4.65, 95.35) 20.5
(4.33, 95.67) 22.10
(4.20, 95.80) 22.81
(4.15, 95.85) 23.10
(3.43, 96.57) 28.41
(3.17, 96.83) 30.56
(2.96, 97.04) 32.78
(2.49, 97.51) 39.15
(2.49, 97.51) 39.15
(0.77, 99.23) 128.87



Table 4
Parameter specification for the algorithms employed in the experimentation.

Algorithm Parameter Value

C4.5 Pruned True
Confidence 0.25
InstancesPerLeaf 2

CO2RBFN Generations of the main loop 200
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5. Experimental framework

In this section we first describe the collection of imbalanced
data sets selected for our study (Section 5.1). Then, we show the
algorithms selected for comparison in the experimental study
and the corresponding parameters (Section 5.2). Finally, we pres-
ent the statistical tests used in all our analysis (Section 5.3).
Number of RBFs 5

HFRBCS Fuzzy configuration
Conjunction operator Product T-norm
Rule weight heuristic Penalised certainty factor
Inference mechanism Winning rule
Hierarchical Generation Process
Alpha 0.2
Number of evaluations 10,000
Population size 61

LVQ Iterations 100
Neurons 20
Alpha 0.3
Nu 0.8

MLP–Back Hidden-layer 2
Hidden-nodes 15
Transfer Htan
Eta 0.15
Alpha 0.10
Lambda 0.0
5.1. Data sets

In this study CO2RBFN is applied to forty-four binary data sets
from the UCI repository (Asuncion and Newman, 2007) with differ-
ent imbalance ratio (IR) (Orriols-Puig and Bernadó-Mansilla, 2009).
Table 3 summarises the data selected in this study and shows, for
each data set, the number of examples (#Ex.), number of attributes
(#Atts.), class name of each class (minority and majority), class
attribute distribution and IR. This table is ordered by the IR, from
low to highly imbalanced data sets.

In order to estimate precision we use a fivefold cross validation
approach, that is five partitions for training and test sets, 80% for
training and 20% for testing, where the five test partitions form
the whole set. For each data set we consider the average results
of the five partitions.
MLP–Grad Hidden-nodes 10
RBFN–Decr Percent 0.1

Initial neurons 20
Alpha 0.3

RBFN–Incr Epsilon 0.1
Alpha 0.3
Delta 0.5
5.2. Algorithms for comparison and parameters

Regarding the algorithms for comparison, we have selected
alternative paradigms in the RBFN design field, other neural net-
work models such as multilayer perceptron and learning vector
quantization network, and rule induction algorithms. Specifically,
we consider five different neural network approaches:

� LVQ: builds a learning vector quantization network composed of
a set of neurons. The set of neurons represents the most indic-
ative prototypes for each class after training, so the class of each
instance will be predicted as the class of the nearest neuron, fol-
lowing a KNN model (Bezdek and Kuncheva, 2001).
� MLP–Back: algorithm for multilayer perceptron networks design

which uses the backpropagation algorithm for learning (Rojas
and Feldman, 1996).
� MLP–Grad: algorithm for multilayer perceptron networks

design which uses the gradient descent algorithm for learning
(Moller, 1990; Widrow and Lehr, 1990).
� RBFN–Decr: algorithm for RBFNs design based on a decremental

scheme (Broomhead and Lowe, 1988).
� RBFN–Incr: algorithm for RBFNs design based on an incremental

scheme (Plat, 1991).

Furthermore, we have selected the C4.5 algorithm (Quilan,
1993) as a well-known classifier that has been widely used for
imbalanced data (Orriols-Puig and Bernadó-Mansilla, 2009; Su
et al., 2006; Su and Hsiao, 2007), and a HFRBCS (Fernández et al.,
2009), which is a fuzzy classifier that has shown to be very com-
petitive within this framework.

HFRBCS has been developed by the authors and the remaining
methods were run using KEEL software (Alcalá-Fdez et al., 2009),
following the recommended parameter values given in the KEEL
platform to configure the methods, which also correspond to the
settings used in the bibliography of these methods. Table 4 sum-
marises the parameters for the different approaches used in the
experimental study.

Regarding the use of the SMOTE pre-processing method (Cha-
wla et al., 2002), we consider only the 1-nearest neighbour (using
the euclidean distance) to generate the synthetic samples, and we
balance both classes to the 50% distribution.
5.3. Statistical tests for evaluation

In this paper, we use the hypothesis testing techniques to pro-
vide statistical support to the analysis of the results (García et al.,
2009; Sheskin, 2006). Specifically, we will use non-parametric tests
due to the fact that the initial conditions that guarantee the reli-
ability of the parametric tests may not be satisfied, causing the sta-
tistical analysis to lose credibility with these parametric tests
(Demšar, 2006).

We will use the Wilcoxon signed-rank test (Wilcoxon, 1945) as
a non-parametric statistical procedure for performing pairwise
comparisons between two algorithms. For multiple comparisons
we use the Iman–Davenport test (Sheskin, 2006) to detect statisti-
cal differences among a group of results, and the Holm post hoc
test (Holm, 1979) in order to find which algorithms are distinctive
among a 1 � n comparison.

The post hoc procedure allows us to know whether a hypothesis
of comparison of means could be rejected at a specified level of sig-
nificance a. However, it is very interesting to compute the p-value
associated to each comparison, which represents the lowest level
of significance of a hypothesis that results in a rejection. In this
manner, we can know whether two algorithms are significantly
different and how different they are.

Furthermore, we consider the average ranking of the algo-
rithms in order to show graphically how good a method is with
respect to its partners. This ranking is obtained by assigning a
position to each algorithm depending on its performance for
each data set. The algorithm which achieves the best accuracy
on a specific data set will have the first ranking (value 1); then,
the algorithm with the second best accuracy is assigned rank
2, and so forth. This task is carried out for all data sets and final-
ly an average ranking is computed as the mean value of all
rankings.



Table 5
Experimentation results without pre-processing.

Base datos C4.5 CO2RBFN HFRBCS LVQ MLP–Back MLP–Grad RBFN–Decr RBFN–Incr

Glass1 71.45 ± 5.40 69.30 ± 6.16 49.65 ± 5.35 62.27 ± 11.19 56.32 ± 10.53 71.28 ± 4.47 67.99 ± 10.07 73.23 ± 8.10
Ecoli0vs1 98.31 ± 2.39 97.03 ± 2.80 94.43 ± 5.49 93.68 ± 3.87 97.59 ± 1.99 0.00 ± 0.00 94.71 ± 4.23 92.93 ± 8.40
Wisconsin 94.50 ± 3.20 97.29 ± 0.77 87.99 ± 2.85 92.65 ± 5.78 96.23 ± 1.15 93.89 ± 2.23 95.31 ± 1.88 95.55 ± 1.89
Pima 68.72 ± 2.95 71.73 ± 4.30 63.88 ± 5.06 56.95 ± 10.07 71.10 ± 4.80 67.72 ± 4.14 65.00 ± 6.63 62.03 ± 5.48
Iris0 98.97 ± 2.29 99.79 ± 1.01 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 99.70 ± 0.82 99.80 ± 0.69
Glass0 81.36 ± 3.05 75.69 ± 7.12 62.85 ± 4.21 69.58 ± 7.76 64.68 ± 8.60 80.08 ± 6.44 68.01 ± 15.37 70.76 ± 12.06
Yeast1 62.83 ± 5.74 70.77 ± 3.58 48.28 ± 2.11 53.62 ± 8.61 65.86 ± 4.92 63.36 ± 2.91 39.71 ± 18.55 46.94 ± 15.37
Vehicle1 95.57 ± 1.26 65.57 ± 2.98 86.87 ± 3.38 52.18 ± 13.27 60.85 ± 13.43 77.10 ± 4.55 52.45 ± 18.91 59.36 ± 6.46
Vehicle2 64.70 ± 2.56 83.37 ± 3.83 56.82 ± 6.03 69.53 ± 8.85 63.86 ± 11.07 97.65 ± 1.71 72.50 ± 8.73 91.23 ± 3.46
Vehicle3 61.37 ± 6.22 66.97 ± 3.46 56.31 ± 5.56 52.75 ± 8.07 64.15 ± 4.84 74.68 ± 5.70 56.27 ± 10.93 54.42 ± 6.37
Haberman 35.63 ± 32.87 61.21 ± 7.26 23.47 ± 14.20 42.08 ± 12.97 61.10 ± 8.59 45.74 ± 6.85 47.62 ± 12.55 47.99 ± 9.51
Glass0123vs456 91.31 ± 7.98 92.27 ± 3.27 88.51 ± 6.45 85.88 ± 8.21 91.55 ± 3.44 86.15 ± 4.52 87.74 ± 7.08 93.63 ± 4.39
Vehicle0 92.90 ± 3.21 89.12 ± 4.55 84.62 ± 3.17 67.90 ± 12.22 68.54 ± 11.90 95.70 ± 2.43 79.21 ± 14.20 94.09 ± 2.70
Ecoli1 85.38 ± 3.75 88.65 ± 4.42 86.09 ± 5.23 77.00 ± 10.51 85.05 ± 3.83 66.92 ± 34.41 79.20 ± 13.93 82.17 ± 8.92
Newthyroid2 93.53 ± 2.89 98.40 ± 3.72 77.72 ± 17.51 78.73 ± 25.19 84.16 ± 18.26 95.93 ± 4.32 90.89 ± 6.38 98.86 ± 2.32
Newthyroid1 90.84 ± 6.52 98.02 ± 3.05 76.42 ± 14.12 84.86 ± 12.48 82.81 ± 19.05 96.49 ± 3.78 92.98 ± 6.21 97.99 ± 3.73
Coli2 85.14 ± 11.24 92.02 ± 3.40 91.04 ± 2.55 85.89 ± 11.71 81.11 ± 8.22 68.50 ± 34.87 77.11 ± 15.43 78.67 ± 14.51
Segment0 98.24 ± 1.18 96.05 ± 2.20 97.39 ± 1.49 82.61 ± 9.12 1.71 ± 8.36 0.00 ± 0.00 59.55 ± 23.33 98.22 ± 1.46
Glass6 79.42 ± 7.05 87.07 ± 7.38 85.46 ± 9.15 85.75 ± 8.04 90.40 ± 6.42 88.60 ± 11.01 88.12 ± 8.95 91.23 ± 6.60
Yeast3 85.10 ± 6.81 89.51 ± 2.58 48.24 ± 8.05 67.78 ± 18.86 74.57 ± 5.51 81.82 ± 6.51 32.65 ± 24.84 67.40 ± 14.61
Ecoli3 67.38 ± 13.36 87.02 ± 7.65 69.85 ± 13.47 74.24 ± 19.72 59.14 ± 33.33 54.32 ± 29.03 66.64 ± 23.66 68.43 ± 29.52
Pageblocks0 91.95 ± 2.38 86.07 ± 2.40 66.70 ± 5.69 55.39 ± 15.72 73.72 ± 8.05 85.01 ± 1.85 65.00 ± 15.38 86.58 ± 2.43
Yeast2vs4 81.69 ± 4.03 86.87 ± 4.90 72.83 ± 14.71 73.54 ± 11.47 72.81 ± 6.48 65.44 ± 34.06 67.13 ± 25.15 70.71 ± 19.93
Yeast05679vs4 60.53 ± 17.58 77.06 ± 8.20 27.69 ± 16.45 64.12 ± 12.75 66.31 ± 10.08 58.25 ± 11.16 52.06 ± 18.50 40.14 ± 20.82
Vowel0 96.83 ± 6.63 87.03 ± 5.86 98.86 ± 2.56 51.52 ± 14.27 68.74 ± 6.33 98.97 ± 1.79 83.81 ± 12.29 99.43 ± 1.39
Glass016vs2 42.16 ± 23.87 47.27 ± 19.50 0.00 ± 0.00 32.94 ± 31.01 23.99 ± 27.91 46.90 ± 29.85 21.98 ± 26.97 29.92 ± 31.83
Glass2 60.08 ± 35.63 57.23 ± 15.11 0.00 ± 0.00 27.58 ± 26.77 18.89 ± 21.63 28.60 ± 30.78 23.86 ± 27.24 26.67 ± 28.65
Ecoli4 82.33 ± 11.77 90.96 ± 6.23 75.97 ± 16.02 78.49 ± 15.70 62.30 ± 32.00 69.09 ± 34.55 82.12 ± 15.88 80.65 ± 15.93
Shuttlec0vsc4 99.97 ± 0.07 69.69 ± 12.50 99.12 ± 1.15 96.13 ± 10.16 82.64 ± 24.84 99.60 ± 0.81 98.53 ± 5.42 99.75 ± 0.55
Yeast1vs7 45.10 ± 27.42 99.67 ± 0.80 16.33 ± 22.36 36.75 ± 28.45 53.80 ± 16.04 38.51 ± 23.65 35.90 ± 23.42 6.53 ± 14.97
Glass4 55.37 ± 51.05 81.84 ± 14.07 52.60 ± 31.13 65.47 ± 24.22 79.66 ± 18.82 71.70 ± 25.45 72.06 ± 34.50 94.89 ± 8.68
Pageblocks13vs4 99.77 ± 0.51 90.15 ± 7.70 57.25 ± 35.03 74.97 ± 11.49 88.21 ± 9.29 98.66 ± 4.04 45.81 ± 27.89 83.41 ± 11.33
Abalone918 44.82 ± 9.83 75.70 ± 9.52 7.07 ± 15.81 27.54 ± 22.45 55.56 ± 18.66 62.98 ± 11.28 32.60 ± 15.58 20.62 ± 16.85
Glass016vs5 79.42 ± 44.41 62.40 ± 40.00 47.29 ± 44.61 35.92 ± 41.56 87.52 ± 4.55 79.55 ± 35.97 71.78 ± 29.02 80.06 ± 21.55
Shuttlec2vsc4 94.14 ± 13.10 93.59 ± 11.70 92.48 ± 12.43 70.14 ± 40.99 80.28 ± 18.41 94.66 ± 10.51 55.25 ± 49.00 81.59 ± 36.05
Yeast1458vs7 0.00 ± 0.00 55.02 ± 14.70 0.00 ± 0.00 21.76 ± 21.34 45.10 ± 17.16 8.75 ± 17.76 3.89 ± 13.45 0.00 ± 0.00
Glass5 88.04 ± 15.83 57.30 ± 43.95 0.00 ± 0.00 21.89 ± 35.73 85.28 ± 5.84 88.51 ± 21.88 66.02 ± 42.34 67.24 ± 39.76
Yeast2vs8 10.00 ± 22.36 71.88 ± 14.13 69.58 ± 12.85 60.66 ± 29.22 64.18 ± 15.59 70.72 ± 19.06 71.76 ± 13.96 72.79 ± 13.42
Yeast4 41.97 ± 27.02 77.33 ± 10.86 12.65 ± 17.32 45.02 ± 20.08 60.29 ± 14.76 44.57 ± 8.61 30.71 ± 26.18 12.94 ± 17.64
Yeast1289vs7 41.97 ± 26.64 55.19 ± 22.50 8.16 ± 18.26 26.13 ± 22.28 38.00 ± 23.10 42.08 ± 23.47 18.45 ± 23.43 0.00 ± 0.00
Yeast5 87.51 ± 6.31 94.12 ± 4.40 48.29 ± 12.81 76.93 ± 23.64 59.79 ± 26.63 63.98 ± 14.45 35.99 ± 29.21 44.80 ± 23.77
Ecoli0137vs26 56.60 ± 36.24 70.50 ± 29.50 35.77 ± 23.31 52.16 ± 46.90 61.92 ± 35.45 58.83 ± 48.37 68.70 ± 40.14 69.50 ± 40.62
Yeast6 54.01 ± 50.80 83.27 ± 10.45 73.65 ± 43.09 64.85 ± 28.28 60.33 ± 16.06 53.23 ± 20.10 15.33 ± 25.68 28.34 ± 30.40
Abalone19 0.00 ± 0.00 50.12 ± 21.81 0.00 ± 0.00 11.42 ± 20.60 49.88 ± 13.87 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

Mean 70.84 ± 12.85 79.48 ± 9.46 56.78 ± 10.93 61.53 ± 17.76 67.27 ± 13.18 66.69 ± 13.62 59.82 ± 18.03 65.03 ± 12.80

Fig. 7. Ranking according to the GM performance for all algorithms without pre-processing. The lower the value, the better.
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These tests are suggested in the studies presented in (Demšar,
2006; García and Herrera, 2008; García et al., 2009; García et al.,
2010), where their use in the field of machine learning is highly rec-
ommended. For a wider description of the use of these tests, please
refer to Appendix A. Furthermore, any interested reader can find
additional information on the website: http://sci2s.ugr.es/sicidm/,
together with the software for applying the statistical tests.
6. Analysis of the results

In this section we will carry out a complete experimental anal-
ysis in order to show two important issues:

1. First, the performance of the algorithms when they are applied
over the original data sets (Section 6.1).

http://sci2s.ugr.es/sicidm/


Table 6
Holm test table without pre-processing in all imbalanced data sets. CO2RBFN is the
control method.

i Algorithm z p ani Hypothesis (a = 0.05)

7 HFRBCS 6.854 7.166E�12 0.0071 Rejected
6 RBFN–Decr 6.397 1.581E�10 0.0083 Rejected
5 LVQ 6.071 1.271E�9 0.01 Rejected
4 RBFN–Back 3.808 1.401 0.0125 Rejected
3 MLP–Incr 3.786 1.530 0.0167 Rejected
2 MLP–Grad 3.199 0.001 0.025 Rejected
1 C4.5 2.611 0.009 0.05 Rejected
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2. Then, the synergy between the SMOTE pre-processing and the
algorithms used in this paper is studied (Section 6.2).

6.1. Performance analysis without pre-processing (original data sets)

Following, we analyse the performance of the methods consid-
ering all the original, without pre-processing, data sets. The com-
plete table of results for all the algorithms used in this study is
shown in Table 5, where the reader can observe the full test results,
with their associated standard deviation, in order to compare the
Table 7
Experimentation results with SMOTE.

Base datos C4.5 CO2RBFN HFRBCS LVQ

Glass1 75.11 ± 3.74 69.86 ± 6.44 73.66 ± 4.66 65.33 ±
Ecoli0vs1 97.95 ± 2.20 96.18 ± 2.96 93.63 ± 6.45 93.05 ±
Wisconsin 95.44 ± 2.01 97.26 ± 0.85 88.24 ± 1.63 94.02 ±
Pima 71.26 ± 4.05 72.56 ± 3.71 68.72 ± 5.26 59.63 ±
Iris0 98.97 ± 2.29 99.90 ± 0.50 100.00 ± 0.00 100.00 ±
Glass0 78.14 ± 2.21 75.64 ± 6.99 76.57 ± 8.05 67.79 ±
Yeast1 70.86 ± 2.95 70.08 ± 3.47 71.71 ± 2.39 57.77 ±
Vehicle1 94.85 ± 1.68 69.08 ± 4.37 90.61 ± 2.17 59.21 ±
Vehicle2 69.28 ± 3.41 87.24 ± 3.98 71.76 ± 2.64 72.34 ±
Vehicle3 74.34 ± 1.08 69.55 ± 3.98 66.80 ± 3.34 60.27 ±
Haberman 61.32 ± 3.85 60.21 ± 6.25 57.08 ± 4.09 50.92 ±
Glass0123vs456 90.13 ± 3.17 93.78 ± 3.28 88.37 ± 3.97 88.46 ±
Vehicle0 91.10 ± 2.70 92.15 ± 2.48 88.92 ± 1.96 77.65 ±
Ecoli1 76.10 ± 9.58 87.84 ± 4.10 84.18 ± 12.69 85.03 ±
Newthyroid2 96.51 ± 4.87 98.46 ± 2.22 99.72 ± 0.63 91.34 ±
Newthyroid1 97.98 ± 3.79 97.54 ± 4.03 98.58 ± 2.48 94.95 ±
Ecoli2 91.60 ± 4.86 93.14 ± 4.50 87.62 ± 8.24 83.62 ±
Segment0 99.26 ± 0.61 97.97 ± 0.81 97.51 ± 1.11 82.45 ±
Glass6 83.00 ± 9.05 85.93 ± 8.39 86.95 ± 10.84 85.86 ±
Yeast3 88.50 ± 3.66 91.11 ± 2.34 90.41 ± 2.34 82.92 ±
Ecoli3 88.77 ± 7.65 85.72 ± 7.90 90.81 ± 4.43 82.27 ±
Pageblocks0 94.84 ± 1.52 88.60 ± 2.01 91.40 ± 0.67 76.39 ±
Yeast2vs4 85.09 ± 10.15 87.29 ± 3.60 89.32 ± 4.18 82.79 ±
Yeast05679vs4 74.88 ± 10.88 78.22 ± 5.10 73.18 ± 7.47 69.77 ±
Vowel0 94.74 ± 5.22 93.77 ± 3.52 98.82 ± 1.62 78.12 ±
Glass016vs2 48.91 ± 29.44 56.44 ± 20.80 58.37 ± 20.04 58.93 ±
Glass2 33.86 ± 32.29 58.15 ± 25.25 54.84 ± 20.57 58.76 ±
Ecoli4 81.28 ± 11.67 89.65 ± 6.17 93.02 ± 8.17 92.37 ±
Shuttlec0vsc4 99.97 ± 0.07 99.58 ± 0.80 99.12 ± 1.15 99.60 ±
Yeast1vs7 67.73 ± 2.28 99.49 ± 0.90 70.74 ± 12.40 59.38 ±
Glass4 83.71 ± 10.78 85.45 ± 12.62 70.39 ± 40.49 80.68 ±
Pageblock13vs4 99.55 ± 0.47 96.65 ± 3.60 98.64 ± 0.65 93.29 ±
Abalone918 15.58 ± 21.36 77.41 ± 10.60 70.19 ± 8.56 52.11 ±
Glass016vs5 72.08 ± 42.33 84.71 ± 31.80 77.96 ± 43.61 85.09 ±
Shuttlec2vsc4 99.15 ± 1.90 99.51 ± 1.00 97.49 ± 2.71 97.92 ±
Yeast1458vs7 41.19 ± 6.06 60.80 ± 11.20 62.49 ± 6.26 52.49 ±
Glass5 86.70 ± 15.44 74.91 ± 38.45 68.73 ± 39.56 88.73 ±
Yeast2vs8 78.23 ± 13.05 77.31 ± 12.23 72.47 ± 15.10 69.26 ±
Yeast4 65.00 ± 8.94 78.95 ± 4.23 82.64 ± 2.29 76.50 ±
Yeast1289vs7 64.13 ± 9.00 70.14 ± 7.50 69.37 ± 4.37 55.15 ±
Yeast5 92.04 ± 4.99 94.69 ± 3.60 94.20 ± 2.59 94.86 ±
Ecoli0137vs26 80.38 ± 15.47 70.09 ± 36.30 84.92 ± 12.88 66.41 ±
Yeast6 71.21 ± 41.31 86.57 ± 8.40 71.48 ± 41.80 76.41 ±
Abalone19 53.19 ± 8.25 70.18 ± 11.77 67.56 ± 14.01 52.86 ±

Mean 78.95 ± 8.69 83.40 ± 7.84 81.57 ± 9.10 76.20 ±
performance of each approach, the GM metric is used. We must
emphasise the good results achieved by CO2RBFN, as it obtains
the highest value among all algorithms.

In order to analyse these results, Fig. 7 shows the average rank-
ing computed for all approaches according to the GM metric,
where we can observe that CO2RBFN has obtained the lowest value
in the ranking and therefore it is the best algorithm.

Next, we check for significant differences among the results of
the algorithms used in the experimental study by means of an
Iman and Davenport test. This obtains a p-value near to zero,
which implies that there are significant differences among the re-
sults and therefore we should apply a post hoc test to detect which
methods are outperformed by CO2RBFN, since it is the best ranked
method.

Specifically, we apply a Holm test to compare the best ranking
method (CO2RBFN) with the remaining methods. The result is
shown in Table 6, in which the algorithms are ordered with respect
to the z value obtained. The value pi obtained is compared with the
value ani in the same row of the table, in every case the value pi,
and is lower than the ani corresponding, which implies there are
significant differences between the control algorithm, CO2RBFN,
and the other algorithms.
MLP–Back MLP–Grad RBFN–Decr RBFN–Incr

7.63 57.53 ± 7.14 71.93 ± 5.98 67.95 ± 14.41 73.78 ± 8.91
3.63 97.22 ± 1.70 0.00 ± 0.00 94.69 ± 4.71 95.13 ± 5.26
5.18 90.52 ± 17.72 95.31 ± 1.57 94.41 ± 4.95 94.16 ± 5.07
5.77 69.89 ± 6.63 69.62 ± 4.85 63.97 ± 7.71 61.95 ± 4.45
0.00 100.00 ± 0.00 100.00 ± 0.00 99.80 ± 0.69 99.69 ± 1.10
5.03 68.62 ± 6.21 79.53 ± 5.75 71.89 ± 9.37 76.36 ± 6.62
6.70 63.16 ± 13.54 72.34 ± 3.11 34.15 ± 20.61 62.45 ± 9.80
6.01 61.19 ± 5.93 81.94 ± 3.31 61.78 ± 9.60 60.70 ± 5.03
5.75 70.18 ± 8.18 97.50 ± 1.58 73.19 ± 10.18 91.55 ± 2.98
5.96 64.82 ± 3.06 79.27 ± 3.49 61.28 ± 6.82 58.37 ± 6.79
8.28 56.24 ± 10.64 57.47 ± 7.29 58.04 ± 8.51 53.38 ± 5.21
5.58 84.03 ± 7.56 87.67 ± 5.65 88.94 ± 9.22 92.17 ± 4.33
5.05 81.40 ± 5.02 95.07 ± 2.70 73.22 ± 19.41 90.21 ± 5.11
5.72 86.85 ± 3.88 69.58 ± 35.02 81.50 ± 18.02 87.57 ± 6.31
7.51 98.48 ± 1.12 98.82 ± 3.00 93.52 ± 5.17 99.04 ± 1.37
4.83 97.35 ± 2.63 99.44 ± 0.69 88.98 ± 7.35 98.63 ± 2.43
7.41 87.54 ± 6.36 72.93 ± 36.58 72.68 ± 21.91 81.85 ± 15.80
6.08 1.99 ± 9.77 0.00 ± 0.00 62.58 ± 14.89 97.96 ± 1.15
7.19 88.05 ± 7.17 85.19 ± 9.20 88.16 ± 8.22 85.52 ± 9.05
4.88 82.96 ± 17.18 91.65 ± 2.47 56.92 ± 29.97 87.77 ± 4.56
6.06 86.65 ± 6.09 68.36 ± 34.94 78.96 ± 20.01 86.26 ± 9.65
4.95 78.65 ± 7.02 93.72 ± 1.05 68.33 ± 16.66 57.03 ± 13.20
5.09 85.61 ± 6.06 67.96 ± 34.57 69.93 ± 23.54 81.72 ± 10.33
9.12 76.90 ± 5.61 75.32 ± 6.46 53.02 ± 27.34 72.19 ± 12.11
6.18 84.55 ± 6.61 99.19 ± 1.73 93.14 ± 10.87 99.36 ± 1.63
12.85 45.07 ± 26.29 62.97 ± 18.08 66.17 ± 18.50 64.96 ± 14.63
13.33 63.98 ± 10.68 67.51 ± 17.36 62.63 ± 17.59 66.42 ± 11.93
5.29 91.35 ± 6.65 68.62 ± 34.32 88.05 ± 18.95 93.72 ± 5.94
0.81 99.83 ± 0.55 99.75 ± 0.66 98.27 ± 5.48 99.91 ± 0.12
15.49 69.75 ± 8.32 62.94 ± 12.31 42.46 ± 25.31 64.85 ± 11.41
20.55 87.93 ± 10.08 80.94 ± 26.70 76.64 ± 25.73 93.62 ± 8.31
4.61 79.88 ± 12.93 98.50 ± 2.76 88.33 ± 18.54 86.55 ± 13.99
11.77 75.41 ± 16.73 75.42 ± 11.58 53.82 ± 9.78 70.30 ± 8.91
12.39 91.21 ± 6.84 85.16 ± 27.25 85.27 ± 12.36 83.58 ± 22.37
4.48 97.93 ± 5.06 99.26 ± 1.28 77.14 ± 38.80 75.25 ± 38.66
12.66 60.79 ± 7.76 55.12 ± 20.49 34.52 ± 22.68 52.03 ± 17.95
7.60 80.49 ± 30.59 77.83 ± 31.32 69.87 ± 36.50 69.82 ± 37.32
10.47 71.19 ± 11.67 70.06 ± 21.25 53.58 ± 25.15 74.19 ± 12.05
6.58 80.92 ± 4.56 77.96 ± 8.51 59.46 ± 21.78 78.62 ± 7.27
8.35 69.44 ± 5.48 60.87 ± 9.10 23.28 ± 24.96 63.19 ± 10.36
2.07 91.67 ± 6.02 93.17 ± 5.09 40.41 ± 43.18 94.54 ± 3.96
34.27 54.87 ± 45.05 57.69 ± 47.13 62.74 ± 38.02 61.16 ± 43.29
10.18 85.78 ± 5.61 84.59 ± 7.71 34.09 ± 36.30 83.47 ± 9.04
15.69 60.46 ± 14.83 51.87 ± 11.45 54.47 ± 14.09 63.32 ± 12.10

8.07 76.78 ± 9.29 75.91 ± 11.94 68.69 ± 17.81 79.19 ± 10.18



Table 8
Wilcoxon test to compare the use of SMOTE with the performance without pre-processing. R+ corresponds to the SMOTE pre-processing and R� to the original data sets.

Comparison R+ R� p-Value Hypothesis (a = 0.05)

CO2RBFN + SMOTE vs. CO2RBFN 856.0 134.0 0.000 Rejected for CO2RBFN + SMOTE
LVQ + SMOTE vs. LVQ 969.5 20.5 0.000 Rejected for LVQ + SMOTE
MLP–Back + SMOTE vs. MLP–Back 853.5 136.5 0.000 Rejected for MLP–Back + SMOTE
MLP–Grad + SMOTE vs. MLP–Grad 873.0 117.0 0.000 Rejected for MLP–Grad + SMOTE
RBFN–Decr + SMOTE vs. RBFN–Decr 816.0 174.0 0.000 Rejected for RBFN–Decr + SMOTE
RBFN–Incr + SMOTE vs. RBFN–Incr 811.0 179.0 0.000 Rejected for RBFN–Incr + SMOTE

Table 9
Holm test table with SMOTE pre-processing in all imbalanced data sets. CO2RBFN is
the control method.
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The null-hypothesis of equality is rejected in all cases, which
supports the conclusion that CO2RBFN outperforms the remaining
algorithms when the original data sets are used.
i Algorithm z p ani Hypothesis (a = 0.05)

7 RBFN–Decr 5.875 4.23E�9 0.0071 Rejected
6 LVQ 5.157 2.509E�7 0.0083 Rejected
5 MLP–Back 2.851 0.004 0.01 Rejected
4 RBFN–Incr 2.655 0.008 0.0125 Rejected
3 MLP–Grad 2.154 0.031 0.0167 No Rejected
2 C4.5 1.871 0.061 0.025 No Rejected
1 HFRBCS 1.719 0.086 0.05 No Rejected

Table 10
Wilcoxon test table with SMOTE pre-processing in all imbalanced data sets.

R+ CO2RBFN R� p-Value

648.0 C4.5 306.0 0.027
647.05 HFRBCS 343.0 0.076
915.0 LVQ 75.0 0.000
823.0 MLP–Back 167.0 0.000
651.0 MLP–Grad 339.0 0.069
942.0 RBFN–Decr 48.0 0.000
757.5 RBFN–Incr 232.5 0.002
6.2. Analysis of the significance of the pre-processing mechanism: use
of SMOTE

In this case, the complete table of results with the application of
the SMOTE pre-processing technique is shown in Table 7, which
follows the same structure as the previous one. Also in this case
the CO2RBFN approach achieves the highest result in test among
all the algorithms compared in this analysis.

Now, we will apply a Wilcoxon signed-ranks test to compare
the results of each algorithm with SMOTE pre-processing and
without pre-processing.

The results obtained are shown in Table 8, from which we can
conclude that the use of pre-processing is a necessity in the frame-
work of imbalanced data sets as the results when applying SMOTE
improve significantly for all the algorithms used in this paper.

Once we have shown the significance of pre-processing for the
algorithms selected for the experimental study, the second part of
this study is aimed to analyse the performance among these meth-
ods by considering all the data sets which have been pre-processed
with SMOTE.

First, Fig. 8 shows the average ranking computed for all ap-
proaches according to the GM metric, where we can observe that
CO2RBFN is the best algorithm, because it has obtained the lowest
value in the ranking.

The Iman and Davenport test obtains a p-value near to zero,
which implies that there are significant differences among the re-
sults and thus we should apply a post hoc test to detect which
methods are outperformed by CO2RBFN, since it is the best ranked
method.

A Holm test, shown in Table 9, compares the best ranking meth-
od (CO2RBFN) with the remaining methods. There are significant
differences between the control algorithm, CO2RBFN, and RBFN–
Decr, LVQ, MLP–Back and RBFN–Incr. There are not significant dif-
ferences between CO2RBFN and MLP–Grad, C4.5 and HFRBCS.
Fig. 8. Ranking according to the GM performance for all algorithm
Next, a Wilcoxon test (Table 10) is applied in order to detect sig-
nificant differences between the behaviour of pairs of algorithms.
As can be seen, in this table the null hypothesis is rejected with
a low p-value in all cases.

We must point out that the good behaviour of CO2RBFN with
imbalanced data sets and with the original data, could be pro-
moted by the definition of the credit assignment in the algorithm.
It considers three factors but only one, the error measure (Eq. (8))
in Section 4.3), is influenced by the imbalanced data. Regarding the
contribution factor contribution (Eq. (7)) also in Section 4.3), the
effect of imbalanced data is smoothed by the q parameter which
considers all the RBFs (almost including almost an RBF for the
minority class). The last factor, overlapping (Eq. (9)) is independent
of the class distribution for the examples and enables the coverage
of all the solution space. We think that the performance of
s with SMOTE pre-processing. The lower the value, the better.
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CO2RBFN with imbalanced data could be increased if an imbal-
anced precision factor was introduced in the credit assignment.
7. Concluding remarks

In this contribution we have analysed CO2RBFN, a hybrid evolu-
tionary cooperative–competitive algorithm for the design of RBFNs
applied to the classification of imbalanced data sets.

The aim of CO2RBFN is to obtain simple and accurate networks
and, in this manner, both the design of the general evolutionary
paradigm and the rest of the components have this objective. An
important key point of CO2RBFN is the identification of the role
(credit assignment) of each basis function in the whole network.
In order to evaluate this value for a given RBF three factors are de-
fined and used: the RBF contribution to the network’s output, ai

(promoting the generality of the RBF); the error in the basis func-
tion radius, ei (reinforcing the quality of the individual); and the
degree of overlapping among RBFs, oi (promoting the good location
of the RBFs). In order to drive the cooperative–competitive process,
with an adequate balance between exploration and exploitation,
four operators are used: Remove, Random Mutation, Biased Mutation
(based on clustering) and Null. The application of these operators is
determined by a fuzzy rule-based system which represents expert
knowledge of the RBFN design. The inputs of this system are the
three parameters used for credit assignment: ai, ei, and oi.

We have studied the effect of a pre-processing stage on the per-
formance of CO2RBFN by contrasting the results obtained using the
original data sets against the ones obtained with the SMOTE algo-
rithm. Furthermore, we have included in our experimental study
some well-known soft-computing methods for comparison for
both the neural network paradigm and rule induction systems.

The experimentation shows that CO2RBFN outperforms, with
significant differences, the remaining methods in a imbalanced
data sets framework. Pre-processing promotes better results in
CO2RBFN, the same as with the other soft-computing methods.
But the combination of CO2RBFN with SMOTE allows to obtain
the RBFNs with the best prediction capacity of all the methods
considered.

The good performance of CO2RBFN in the scenario of imbal-
anced data sets is due to the definition used for the credit assign-
ment of individuals. In this way and in order to evaluate an
individual only one of the three parameters takes into account
the accuracy of the RBF. The other ones are for distributing, explor-
ing and optimizing the RBFs in the data set space definition.

As future work, we will focus our studies on the framework of
highly imbalanced data sets, analysing the improvement of
CO2RBFN and considering an imbalanced precision factor in the
credit assignment.
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Appendix A. On the use of non-parametric tests based on
rankings

In this paper, we have made use of statistical techniques for the
analysis of neural network methods, since they are a necessity in
order to provide a correct empirical study (Demšar, 2006; García
and Herrera, 2008; García et al., 2009). Specifically, we have em-
ployed non-parametric tests, due to the fact that the initial condi-
tions that guarantee the reliability of the parametric tests may not
be satisfied, making the statistical analysis lose credibility (De-
mšar, 2006).

In this appendix we describe the procedures for performing
pair and multiple comparisons. Specifically, we have employed
a Wilcoxon signed-rank test as a non-parametric statistical
procedure for performing pairwise comparisons between two
algorithms. For multiple comparison we have used an Iman–
Davenport test to detect statistical differences. A Holm post
hoc test was used in order to find which algorithms partners’
average results were dissimilar. We describe these approaches
below. Furthermore, any interested reader can find additional
information on the website: http://sci2s.ugr.es/sicidm/, together
with the software for applying the statistical tests.

A.1. Pairwise comparisons: Wilcoxon signed-ranks test

This is the analogue of the paired t-test in non-parametrical sta-
tistical procedures; therefore, it is a pairwise test that aims to de-
tect significant differences between the behaviour of two
algorithms.

Let di be the difference between the performance scores of the
two classifiers on ith out of Nds data sets. The differences are ranked
according to their absolute values; average ranks are assigned in
the case of ties. Let R+ be the sum of ranks for the data sets on
which the second algorithm outperformed the first, and R� the
sum of ranks for the opposite. Ranks of di = 0 are split evenly
among the sums; if there is an odd number of them, one is ignored:

Rþ ¼
X
di>0

rankðdiÞ þ
1
2

X
di¼0

rankðdiÞ; ðA:1Þ

R� ¼
X
di<0

rankðdiÞ þ
1
2

X
di¼0

rankðdiÞ; ðA:2Þ

Let T be the smallest of the sums, T = min(R+,R�). If T is less than
or equal to the value of the distribution of Wilcoxon for Nds degrees
of freedom (Table B.12 in Zar, 1999), the null hypothesis of equality
of means is rejected.

A.2. Multiple comparisons: Iman–Davenport and Holm post hoc tests

In order to perform a multiple comparison, it is necessary to
check whether all the results obtained by the algorithms present
any inequality. In the case of finding inequality then we can know,
by using a post hoc test, which algorithms partners’ average results
are dissimilar. Next, we describe the non-parametric tests used.

� The Iman and Davenport test (Sheskin, 2006) is a non-paramet-
ric test, derived from the Friedman test (Sheskin, 2006):
FF ¼
Nds � 1ð Þv2

F

NdsðK � 1Þ � v2
F

which is distributed according to the F-distribution with k � 1 and
(k � 1)(Nds � 1) degrees of freedom. Statistical tables for critical val-
ues can be found at (Sheskin, 2006; Zar, 1999).
� The Holm test (Holm, 1979): it is a multiple comparison proce-

dure which can work with a control algorithm and compares it
with the remaining methods. The test statistics for comparing
the ith and jth method using this procedure is
z ¼ Ri � Rj
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kðkþ 1Þ
6Nds

s,
:

The z value is used to find the corresponding probability from the
table of normal distribution, which is then compared with an
appropriate level of confidence a.
A Holm test is a step-up procedure that sequentially tests the

http://sci2s.ugr.es/sicidm/
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hypotheses ordered by their significance. We will denote the or-
dered p-values by p1, p2, . . ., so that p1 6 p2 6 . . . 6 pk�1. The Holm
test compares each pi with a/(k � i), starting from the most signifi-
cant p value. If p1 is below a/(k � 1), the corresponding hypothesis
is rejected and we can compare p2 with a/(k � 2). If the second
hypothesis is rejected, the test proceeds with the third, and so on.
As soon as a certain null hypothesis cannot be rejected, all the re-
main hypotheses are retained as well.
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