
Analysis and Improvement of the Genetic
Discovery Component of XCS

Sergio Morales-Ortigosa, Albert Orriols-Puig, and Ester Bernadó-Mansilla

Grup de Recerca en Sistemes Intel·ligents
Enginyeria i Arquitectura La Salle

Universitat Ramon Llull
Quatre Camins 2, 08022, Barcelona (Spain)

email: {is09767,aorriols,esterb}@salle.url.edu

Abstract

XCS is a learning classifier system that uses genetic algorithms to evolve a
population of classifiers online. When applied to classification problems described
by continuous attributes, XCS has demonstrated to be able to evolve classifica-
tion models—represented as a set of independent interval-based rules—that are,
at least, as accurate as those created by some of the most competitive machine
learning techniques such as C4.5. Despite these successful results, analyses of
how the different genetic operators affect the rule evolution for the interval-based
rule representation are lacking. This paper focuses on this issue and conducts a
systematic experimental analysis of the effect of the different genetic operators.
The observations and conclusions drawn from the analysis are used as a tool for
designing new operators that enable the system to extract models that are more
accurate than those obtained by the original XCS scheme. More specifically, the
system is provided with a new discovery component based on evolution strategies,
and a new crossover operator is designed for both the original discovery compo-
nent and the new one based on evolution strategies. In all these cases, the behavior
of the new operators are carefully analyzed and compared with the ones provided
by original XCS. The overall analysis enables us to supply important insights into
the behavior of different operators and to improve the learning of interval-based
rules in real-world domains on average.

1 Introduction

Learning classifier systems (LCSs) [17] are machine learning techniques that combine
genetic algorithms (GAs) [13, 16] with apportionment of credit techniques to learn rule
sets online through the interaction with an environment that represents a stream of ex-
amples. In the recent years, XCS [28], the most influential LCS, has arisen as a promis-

ing technique for classification tasks and data mining, showing its competitiveness with
respect to highly-used machine learning techniques such as the decision tree C4.5 and
support vector machines [20, 21]. When applied to real-world classification problems
that are described by continuous attributes, XCS evolves a population of interval-based
classification rules [29] by means of the interaction of two main components: (1) a
rule evaluation system and (2) a rule discovery procedure. The rule evaluation system,
based on reinforcement learning techniques, is responsible for evaluating the quality
of the rules online with the information provided by the environment. This component
has received an increasing amount of attention during the last few years, resulting in
several improvements that enabled the system to solve problems that previously eluded
solution [6]. The rule discovery procedure, driven by a GA, is responsible for providing
the system with new promising rules. For the interval-based representation, XCS uses
simple crossover and mutation operators that were copied from the ternary-rule repre-
sentation. Thence, whereas the evaluation component has been studied in detail, the
discovery component for the interval-based representation has received little attention,
remaining practically unchanged from its initial conception [29].

The purpose of this paper is to experimentally analyze the role of the different ge-
netic operators and to use the observations extracted from this analysis to improve the
existing operators to deal with interval-based rules. To achieve this, we first focus on
analyzing the role of the mutation operator and design a new discovery procedure based
on evolution strategies (ESs) [24], since this type of search procedures were specifically
ideated to deal with continuous attributes such as those used by the interval-based rep-
resentation. Both original XCS and XCS based on ESs are systematically compared
on a collection of real-world problems, emphasizing the benefits provided by the muta-
tion operator incorporated by the new ES-based discovery component. Subsequently,
the role of the crossover operator is studied. We propose a new crossover scheme, ad-
dressed as BLX crossover, which is inspired by the BLX-α crossover operator of real-
coded GAs [14], but adapted to deal with the interval-based representation of XCS.
The performance obtained when using the new crossover operator in XCS with both
ESs and GAs is tested on a large collection of real-world problems. The overall study
enables us to (1) increment our understanding of the role of different genetic operators,
as well as their limitations, and (2) improve the discovery procedure of the original
scheme of XCS, being able to evolve models that are, on average, more accurate.

The remainder of this paper is organized as follows. Section 2 briefly describes
XCS, and Sect. 3 explains the new discovery component based on ESs. Section 4 first
analyzes the role of the mutation operator alone in both GA-based and ES-based XCS,
and later, introduces the crossover operator in the analysis. Section 5 starts with the
improvement of the crossover operator, describing a new enhanced operator that tries
to capture some of the ideas articulated in the analysis of GA-based XCS and ES-based
XCS. The benefits of this new operator are experimentally analyzed in Sect. 6. Finally,
Section 7 summarizes, concludes, and discusses future work lines.

2 The XCS Classifier System

XCS [28] is the most influential Michigan-style LCS. The system combines reinforce-
ment learning techniques [25] with GAs [13, 16] to learn a distributed set of sub-
solutions online. As follows, we briefly describe the knowledge representation used
by XCS in domains with continuous variables and then explain the process organiza-
tion followed by the system to evolve a classification model. Lastly, we exemplify
the type of classification models built by XCS and discuss the possible difficulties that
the discovery component of XCS may need to face to evolve an accurate classification
model in complex domains. For further details of the system, the reader is referred to
[8, 28, 29].

2.1 Knowledge Representation

XCS evolves a population [P] of classifiers that consist of a production rule and a set
of parameters. In domains with continuous attributes, production rules most often take
the following form [29]:

if x1 ∈ [�1, u1] ∧ x2 ∈ [�2, u2] ∧ . . . ∧ x� ∈ [��, u�] then c, (1)

where the antecedent of the rule contains � input variables that are represented by an
interval of possible values [�i, ui]�, and the consequent denotes the predicted class.
Note that the condition of the rule defines a hyper rectangle in the solution space.
Therefore, the population represents a set of hyper rectangles that together should cover
all the solution space. Then, a rule matches an input instance e = (e1, e2, . . . , e�) if
∀i �i ≤ ei ≤ ui.

Each classifier has six main parameters: (1) the payoff prediction p, an estimate of
the reward that the system will receive if the class of the rule is selected as output, (2)
the prediction error ε, which estimates the error of the payoff prediction, (3) the fitness
F , which is computed as an inverse function of the prediction error, (4) the action set
size as, an estimate of the average size of the action sets in which the classifier has
participated, (5) the experience exp, which reckons the number of examples that the
classifier has matched during its life, and (6) the numerosity n, the number of copies
of the classifier in the population.

To fully understand the learning process of XCS, the next three subsections explain
how the different components of the system interact to evaluate the existing classifiers
and how the GA is applied to evolve new classifiers.

2.2 Learning Interaction

XCS learns online by interacting with an environment which provides a new training
example at each iteration. That is, at each learning iteration, XCS receives a new
training example e = (e1, e2, . . . , e�) and the system creates a match set [M], which
consists of all the classifiers in [P] whose condition matches e. The next step depends
on whether the system is in exploitation (test) mode or in exploration (training) mode.
In exploitation mode, the classifiers in [M] vote, according to their fitness, for the class

they predict. The most voted class is selected as output. In exploration mode, the
system randomly chooses one of the possible classes and builds the action set [A] with
all the classifiers in [M] that advocate the selected class. The parameters of all the
classifiers in [A] are updated according to a generalized version of Q-learning, which
is explicated in the following subsection.

2.3 Parameter Update

Once [A] is formed, the selected class is sent to the environment, which returns a
reward R that is used by XCS to update the parameters of the classifiers in [A]. First, the
prediction p is adjusted as p = p+β(R−p), where β is the learning rate (0 < β ≤ 1).
Next, the error ε is updated as ε = ε + β(|R − p| − ε). To update the fitness of the
classifiers, XCS first computes the accuracy κ of each classifier as follows:

κ =

{
1 if ε < ε0,

α(ε/ε0)−ν otherwise;
(2)

where ε0 is the maximum error that a classifier can have to be considered maximally
accurate, and α is a discount factor. κ is used to compute the relative accuracy κ ′ of
the classifier in [A] as κ′ = κ/

∑
[A] κi. Finally, fitness is updated from the relative

accuracy as F = F + β(κ′ − F). Note that fitness is shared among the classifiers in
the same action set since it is calculated from the relative accuracies.

2.4 Discovery Component

XCS applies a steady-state niche-based GA to discover new promising rules. The GA
is triggered on [A] when the average time since its last application to the classifiers in
[A] exceeds a certain threshold θGA. Then, the system selects two parents from [A]. So
far, two selection schemes have been studied: proportionate selection [28], in which
each classifier has a probability proportional to its fitness to be chosen, and tourna-
ment selection [7], in which tournaments are held among a set of randomly selected
classifiers, and the best classifier of the tournament is chosen as a parent.

Next, the parents are crossed and mutated with probabilities χ and μ respectively.
For the interval-based representation, the crossover and the mutation operators work as
follows [29]. Crossover shuffles the condition of the two parents by cutting the chro-
mosomes by two points. Figure 1 illustrates an example of crossover of two classifiers
that are described by two attributes. Mutation decides whether each variable has to be
changed; in this case, it adds a random amount, ranging in [0, m 0] to the lower or to the
upper bound of the variable interval. An example of mutation is illustrated in Fig. 2.

Finally, each offspring is introduced into the population, removing a classifier with
low fitness if the population is full. The deletion probability of a classifier is propor-
tional to the size of the action sets where the classifier has participated and inversely
proportional to its fitness [19]. This biases the search toward highly fit classifiers and,
at the same time, balances the classifier allocation in the different action sets.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

a2

a1

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

a2

a1

(b)

Figure 1: Example of crossover: (a) plots the two parents and (b) shows the offspring
resulting from two cut points occurring in the middle of each interval.

0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

0

a1

a2

Figure 2: Example of mutation: a random value is added to the lower bound of attribute
a2.

2.5 How Do Models Evolved by XCS Look Like?

Thus far, we have explained the knowledge representation, which uses interval-based
rules, and the process employed to evolve a population of maximally general and ac-
curate rules. In this section, we use the tao problem [4] to illustrate how these classifi-
cation models look like and to intuitively discuss the possible limitations of the genetic
operators utilized by XCS.

The tao problem is a two-class classification problem described by two attributes.
Figure 3(a) depicts the learning examples of the problem, and Fig. 3(b) shows the
rules evolved by a single run of XCS on this problem. The hyper rectangles in dashed

(a) Domain (b) Rule set

Figure 3: Example of (b) the rules evolved by XCS on (a) the tao problem.

lines represent the condition of the rules in the final population that predict the first
class, while the hyper rectangles in continuous lines represent the rules that predict the
second class. Note that the system evolves a large number of overlapping rules to fit the
curved boundaries of the tao problem. In particular, it is worth noticing that, near the
class boundary, there are a lot of overlapping classifiers that predict different classes.
These regions of the feature concentrate almost all the error of the classification models
evolved by XCS.

Ideally, we would like the discovery component of XCS to incrementally adjust
classifiers that are close to the class boundary, resulting in offspring with zero error.
However, the genetic operators implemented in the original scheme of XCS may not
have the flexibility to provide this adjustment. That is, the mutation operator selects a
variable and adds or removes a random number from one of the limits of its interval
(see Fig. 2). Therefore, the operator does not consider whether the classifier is near
the class boundary or not. On the other hand, 2-point crossover takes two parents and
may generate completely different offspring (see Fig. 1(a)). Thus, this operator allows
exploring new regions of the feature space, but may be too disruptive when crossing
classifiers that lay closely to the class boundary. Consequently, despite the competitive
results obtained by XCS when using these two operators, intuition indicates that new
operators that consider more information to generate new offspring may be beneficial
to the system. With this idea in mind, the next section starts revisiting the mutation
operator of XCS by proposing a new discovery component based on ESs.

3 Introducing Evolution Strategies into XCS: Repre-
sentation and New Operators

ESs [23, 24], like GAs, are optimization algorithms that take inspiration from biology
to solve complex optimization problems. One of the main differences between GAs

and ESs is that ESs incorporate a vector of strategy parameters that are used by the
mutation operator to guide the local search toward the objective. Therefore, mutation
is the primary search operator of ESs. The vector of strategy parameters is self-adapted
during the evolutionary process with the aim of applying more precise mutations to the
population individuals, driving them to the optimal solution.

The purpose of this section is to design an ES-based search component for XCS
with the aim of providing a more guided search toward maximally general and accurate
classifiers. For this purpose, we extend the representation of the classifiers and design
new genetic operators. The following describes the new ES-based search component
in more detail.

3.1 Knowledge Representation for Evolution Strategies

Now, the classifier representation is extended with a vector of strategy parameters s =
(σ1, σ2, . . . , σ�), and each strategy parameter σi is used to adapt the intervals of the
corresponding rule variable. Strategy parameters evolve together with the rule variables
(which are referred to as object parameters in ESs terms). Thence, the covering and
the genetic operators are redefined to let them deal with the new representation. Also,
new selection schemes are considered. These modifications are explicated in the next
subsection.

3.2 Redefinition of XCS Operators

The covering and genetic operators of XCS with ES-based discovery component are
redefined as follows.

Covering

Covering initializes each strategy parameter σi as σi = rand(0, μ), where μ is initially
chosen in the range [1/N, 1/�] (where N is the population size, and � is the number of
variables of the problem).

Selection

In ESs, the typical selection operator is truncation selection, which chooses the indi-
viduals that have highest fitness. We consider this strategy in XCS, so, selecting the
classifiers with highest fitness in [A]. Since this selection strategy can be quite aggres-
sive, especially in steady-state algorithms, we also use proportionate and tournament
selection as defined in the previous section.

Mutation

The mutation operator first mutates the intervals of each rule variable x i as

xi = xi + zi, (3)

where zi = σiNi(0, 1), and Ni(0, 1) returns a Gaussian number ranging in [0,1].

The strategy parameters are self-adapted along the XCS run. After mutating the
rule condition, the new vector of strategy parameters s ′ is updated as

s′ = eτ0N0(0,1)
(
σ1e

τN1(0,1),...,τN�(0,1)
)

, (4)

where τ indicates the precision of self-adaption, τ0 weights the global effect of mu-
tation, and Ni(0, 1) returns a Gaussian number with σ = 1. In our experiments, we

configured τ0 = 1/
√

2� and τ = 1/
√

2
√

� as usually done in the ESs literature.

Crossover

We consider two different crossover operators for the rule condition and the strategy
parameters. For the rule condition, we use discrete recombination. Given two parents,
for each variable, this crossover operator randomly selects one of the parents and copies
the value of the variable to the first offspring; then, it copies the corresponding variable
of the other father to the other offspring. For strategy parameters, we use intermediate
recombination. This recombination operator computes each strategy parameter σ i as
the average value of the corresponding parameter in the parent rules.

4 Analysis of XCSGA and XCSES

So far, we have described the original scheme of XCS, which uses a GA as discovery
mechanism, and the new proposal of XCS in which the discovery procedure is driven
by an ES. In the remainder of the paper, we will address these two versions of XCS as
XCSGA and XCSES respectively. With the description of both XCSGA and XCSES in
mind, we now start a systematic analysis of the effect of mutation and crossover. For
this purpose, in what follows, we first present the experimental methodology followed
along the study. Then, we proceed to analyze and compare the effect of the different
operators of XCSGA and XCSES , as well as the interaction among themselves.

4.1 Experimental Methodology

We first start the experimental study by examining the behavior of XCS with selection
and mutation with the aim of analyzing the search capabilities provided by the combi-
nation of the two operators in both XCS schemes. Note that the combination of both
operators results in a local search around the classifiers of the population. Then, we
add crossover to the study, showing the benefits supplied by this operator. Moreover,
in all the cases, the results of XCSGA are compared with those obtained by XCSES ,
providing some interesting insights into the differences between ESs and GAs in the
context of online learning.

For the study, we used a collection of 12 real-world data sets whose characteristics
are summarized in Table 1. All the data sets were extracted from the UCI repository
[1], except for tao, which was selected from a local repository [4]. The different con-
figurations of XCSGA and XCSES were ran on these data sets and the quality of the
results was compared in terms of the performance (test accuracy) of the final models.

Table 1: Properties of the data sets. The columns describe: the identifier of the data
set (Id.), the name of the data set (data set), the number of instances (#Inst), the total
number of features (#Fea), the number of continuous features (#Re), the number of
integer features (#In), the number of nominal features (#No), the number of classes
(#Cl), and the proportion of instances with missing values (%MisInst).

Id. data set #Inst #Fea #Re #In #No #Cl %MisInst
bal Balance 625 4 4 0 0 3 0
bpa Bupa 345 6 6 0 0 2 0
gls Glass 214 9 9 0 0 6 0
h-s Heart-s 270 13 13 0 0 2 0
irs Iris 150 4 4 0 0 3 0
pim Pima 768 8 8 0 0 2 0
tao Tao 1888 2 2 0 0 2 0
thy Thyroid 215 5 5 0 0 3 0
veh Vehicle 846 18 18 0 0 4 0
wbcd Wisc. breast-cancer 699 9 0 9 0 2 2.3
wdbc Wisc. diagnose breast-cancer 569 30 30 0 0 2 0
wne Wine 178 13 13 0 0 3 0

To obtain reliable estimates of this metric, we used a 10-fold cross-validation proce-
dure [26]. XCS was configured as follows (see [8] for notation details): num iter =
100 000, N = 6 400, θGA = 50, χ = 0.8, μ = 0.04, r0 = 0.6, m0 = 0.1.

We statistically analyzed the performance of each learner following the procedure
pointed out in [9]. We first applied the multi-comparison Friedman’s test [11, 12] to
contrast the null hypothesis that all the learning algorithms performed the same on
average. If the Friedman’s test rejected the null hypothesis, the post-hoc Bonferroni-
Dunn test [10] was used to detect significant differences between a control learner and
the remaining methods, and the post-hoc Holm’s step-down procedure [15, 18] was
employed to identify significant differences between the best ranked method and the
other methods of the comparison. Moreover, when required, we also applied pairwise
comparisons by means of the non-parametric Wilcoxon signed-ranks test [27].

4.2 Analysis of the Effect of Selection + Mutation

Our first concern was to analyze the behavior of XCSGA and XCSES when only the
selection and the mutation operator were considered. For this purpose, Table 2 supplies
the test accuracies and the standard deviations obtained by XCSGA and XCSES with
proportionate and tournament selection (see from the 2nd to the 5th column). More-
over, we also included truncation selection for XCSES , since it is a selection operator
widely used in the ESs field (6th column). In all the cases, crossover was switched off.
The last three rows of the table supply the average performance and the average rank
of each learning technique, and its position in the ranking.

The average rank of each learner shows that two schemes based on ESs were the

Table 2: Comparison of the average test performance and standard deviation obtained
by XCSGA and XCSES with proportionate selection (ps) and tournament selection (ts).
Moreover, the results of XCSES with truncation selection (tr) and weighted XCSES (w.
XCSES) are also provided. In all the runs, crossover was switched off. The last three
rows provide the average accuracy and standard deviation, the average rank, and the
position of each learner in the ranking.

DS XCSGA-ps XCSES-ps XCSGA-ts XCSES-ts XCSES-tr w. XCSES

bal 82.35 ± 2.54 82.08 ± 2.22 81.55 ± 2.14 81.71 ± 2.27 81.12 ± 2.63 82.93 ± 3.06
bpa 62.51 ± 2.96 64.15 ± 2.74 62.80 ± 2.90 65.12 ± 2.43 62.70 ± 2.47 62.51 ± 2.60
gls 66.51 ± 1.70 67.13 ± 1.66 66.98 ± 1.75 69.94 ± 2.17 67.29 ± 2.18 67.91 ± 1.62
h-s 41.23 ± 2.07 43.46 ± 1.75 41.60 ± 2.42 42.72 ± 2.24 37.78 ± 2.00 39.63 ± 1.99
irs 94.89 ± 0.70 93.33 ± 0.75 95.33 ± 0.67 94.89 ± 0.66 94.89 ± 0.68 94.44 ± 0.71
pim 70.83 ± 3.04 71.05 ± 3.04 69.99 ± 2.96 72.87 ± 4.22 70.88 ± 2.41 70.53 ± 3.18
tao 89.32 ± 4.99 92.90 ± 5.15 89.79 ± 5.23 93.80 ± 3.72 93.01 ± 5.13 89.90 ± 6.26
thy 94.73 ± 1.03 95.50 ± 0.98 95.66 ± 1.21 96.28 ± 1.18 94.88 ± 1.18 95.66 ± 0.97
veh 65.52 ± 3.75 66.00 ± 3.46 64.50 ± 4.22 67.26 ± 3.74 63.83 ± 4.18 64.34 ± 2.85
wbcd 80.88 ± 2.42 85.84 ± 3.18 81.26 ± 3.21 85.65 ± 2.80 82.50 ± 3.12 82.93 ± 2.86
wdbc 78.68 ± 3.82 75.28 ± 3.98 80.20 ± 3.99 74.93 ± 4.07 67.60 ± 3.86 69.13 ± 3.58
wne 80.71 ± 1.35 86.70 ± 1.00 82.21 ± 1.53 82.02 ± 1.17 78.09 ± 1.73 81.65 ± 1.31
Avg 75.68 ± 2.53 76.95 ± 2.49 75.99 ± 2.69 77.27 ± 2.56 74.55 ± 2.63 75.13 ± 2.58
Rnk 4.38 2.67 3.54 2.00 4.50 3.92
Pos 5 2 3 1 6 4

best ranked methods in the comparison. The Friedman’s test permitted rejecting the
hypothesis that all the learners were statistically equivalent, on average, with a p-value
of 0.0045. Both, the Bonferroni-Dunn test and the Holm’s procedure, at α = 0.05,
indicated that XCSES with tournament selection significantly outperformed XCSGA

with both proportionate selection. In addition, the Bonferroni-Dunn test also identified
that XCSES with proportionate selection was significantly better than XCSGA with
proportionate selection.

Three important observations can be drawn from these results. First, XCS ES based
on truncation selection resulted in the poorest performance of the comparison. We
hypothesize that this behavior was due to the fact that truncation selection is an exces-
sively elitist operator that makes strong pressure toward the fittest individuals, which
goes in detriment of the population diversity. Second, the schemes based on tourna-
ment selection yielded better results than those schemes based on proportionate se-
lection for XCSGA and XCSES . These results show the superiority of tournament
selection with respect to proportionate selection, confirming the empirical and theoret-
ical studies presented in [7] and [22] for the ternary rule representation. Therefore, our
analysis enables us to extend these conclusions to real-world problems. Third, XCS ES

presented brilliant results in the tao, the wbcd, and the wne data sets, significantly out-
performing the results obtained by XCSGA according to a Wilcoxon signed-ranks test
at α = 0.05. To our knowledge, XCSES obtained, by far, the best performance ever
reported for the tao data set, a problem which is especially complicated for XCS since

the hyper rectangular representation can barely approximate the decision boundaries of
the problem accurately [3]. Therefore, the guided search due to the incremental adap-
tion of the strategy parameters provided by Gaussian mutation enabled the system to
create new classifiers that approximated these complex class boundaries 1 more accu-
rately. These results were aligned with our initial intuition (see Sect. 2.5), in which
we already discussed the need of designing operators that permitted this fine tuning in
complex regions of the feature space.

Overall, the results indicated that the mutation introduced by XCSES had a greater
search power due to a more guided search toward optimal classifiers introduced by
Gaussian mutation. We hypothesized that these better behavior was because Gaussian
mutation was assuming tasks of innovation, which has been typically performed by
the recombination operator in the GA realm. In order to confirm the hypothesis, we
designed a new Gaussian mutation operator, which we addressed as weighted Gaussian
mutation. This new operator normalized the random values obtained from the Gaussian
distribution to the range [0,1]; therefore, it decreased the power of the Gaussian mu-
tation by softening the changes that it produced to the classifier variables. The results
obtained with the new operator are shown in the last column of Table 2. Note that the
results of XCSES with weighted Gaussian mutation were similar to those achieved by
XCSGA. This supported the hypothesis that non-weighted Gaussian mutation provided
a more powerful search capability than that of random mutation, promoting the global
search capabilities of XCSES .

4.3 Analysis of the Effect of Selection + Crossover + Mutation

After evaluating the behavior of XCSES with Gaussian mutation with respect to XCSGA,
we now compare the systems with the complete genetic cycle. That is, we ran the same
experiments, but adding the crossover operator to each scheme. More specifically, we
used 2-point crossover for XCSGA (see Sect. 2.4) and a combination of discrete recom-
bination for object parameters and intermediate recombination for strategy parameters
for XCSES (see Sect. 3.2).

Table 3 shows the test accuracy and the standard deviation of the different configu-
rations of XCS on the same collection of real-world problems. Several observations can
be drawn from the results. First, it is worth noting that the inclusion of crossover led to
an improvement of the test accuracy achieved by XCS in most of the data sets not only
for XCSGA, but also for XCSES . Table 4 shows the p-values resulting of the compari-
son of each configuration of XCS with and without crossover according to a Wilcoxon
signed-ranks test. Note that, in all cases, the inclusion of crossover results in a signif-
icant improvement. Therefore, although theoretical studies that show the benefits of
crossover in XCS are lacking, these results support the hypothesis that, in general, its
use is beneficial to solve complex classification real-world problems with both GAs
and ESs. Second, as in the previous section, the XCS’s schemes based on ESs were the
best ranked in the comparison. The multi-comparison test rejected the null hypothesis
that all the learners performed the same, on average, with a p-value of 0.013. Both the

1In general, we consider that complex class boundaries are those that are not aligned with the knowledge
representation used by the learner. For example, curved boundaries are difficult to approximate with a hyper
rectangular representation such as the one used by XCS.

Table 3: Comparison of the test performance and standard deviation obtained by
XCSGA and XCSES with proportionate selection (ps) and tournament selection (ts).
Moreover, the results of XCSES with truncation selection (tr) are also provided. In all
runs, we applied selection, crossover, and mutation. The last three rows provide the
average accuracy and standard deviation, the average rank, and the position of each
learner in the ranking.

DS XCSGA-ps XCSES-ps XCSGA-ts XCSES-ts XCSES-tr
bal 83.20 ± 2.60 82.77 ± 2.44 82.72 ± 2.52 82.77 ± 2.44 82.13 ± 2.78
bpa 68.21 ± 2.88 67.05 ± 2.59 65.22 ± 2.85 65.70 ± 3.02 64.06 ± 2.80
gls 72.12 ± 1.98 71.18 ± 1.50 73.21 ± 1.84 71.65 ± 1.43 69.00 ± 1.90
h-s 46.91 ± 2.04 51.23 ± 2.59 47.04 ± 2.35 49.13 ± 1.91 44.32 ± 2.47
irs 95.33 ± 0.63 95.33 ± 0.52 94.89 ± 0.61 95.11 ± 0.56 94.89 ± 0.76
pim 72.53 ± 2.75 74.43 ± 2.90 73.39 ± 3.44 73.83 ± 3.67 74.74 ± 3.86
tao 91.22 ± 5.06 93.52 ± 4.77 91.19 ± 5.36 94.35 ± 4.86 94.17 ± 4.33
thy 95.81 ± 1.29 95.50 ± 1.33 96.43 ± 1.19 95.66 ± 1.25 95.66 ± 1.42
veh 71.79 ± 4.49 71.75 ± 5.16 71.20 ± 3.22 72.89 ± 3.54 71.20 ± 4.31
wbcd 94.85 ± 1.99 95.47 ± 1.39 93.51 ± 1.99 95.47 ± 1.83 92.61 ± 2.23
wdbc 91.09 ± 1.75 91.80 ± 2.13 92.44 ± 2.19 92.85 ± 2.27 89.51 ± 2.01
wne 95.50 ± 1.34 96.25 ± 1.15 95.69 ± 1.22 96.25 ± 1.06 91.38 ± 1.09
Avg 81.55 ± 2.40 82.19 ± 2.37 81.41 ± 2.40 82.14 ± 2.32 80.31 ± 2.50
Rnk 2.79 2.50 3.33 2.17 4.21
Pos 3 2 4 1 5

Table 4: P-values of the comparison of the different configurations of XCS without and
with crossover. In all cases, XCS with crossover yields significantly better results than
XCS without crossover.

XCSGA-ps XCSES-ps XCSGA-ts XCSES-ts XCSES-tr
p-value 4.88 · 10−4 9.77 · 10−4 9.77 · 10−4 3.40 · 10−3 9.77 · 10−4

post-hoc Bonferroni-Dunn test and the Holm’s procedure, at α = 0.05, identified that
XCSES with tournament selection outperformed XCSES with truncation selection. In
addition, the Bonferroni-Dunn test also detected that XCSES with proportionate selec-
tion outperformed XCSES with truncation selection. No further significant differences
were detected.

Hence, differently from the comparison in the previous section, the results obtained
by the XCS schemes based on ESs were not significantly better than those achieved by
the XCS schemes based on GAs. That is, the introduction of crossover was more ben-
eficial to XCSGA than to XCSES . This behavior can be explained with the following.
In XCSES , the search is basically guided by the mutation operator, and crossover com-
plements this search. Thus, crossover provides a moderate benefit to XCS ES , since
the principal task is done by mutation. Conversely, in XCSGA, the crossover operator
plays a key role since it is the main operator to create new promising solutions; this ob-
servation is sustained by the large difference between the results obtained by XCS GA

with and without crossover.
Despite the improvement observed in XCSGA when crossover is activated, notice

that XCSES continues being the best ranked learner on average. These better results of
XCSES are mainly due to the modifications done on the mutation scheme. In the next
section, we focus our attention in the second important genetic operator: crossover.
We consider some of the ideas that have appeared in this analysis and design a more
flexible crossover operator for both XCSGA and XCSES .

5 New BLX Crossover

One of the important aspects of XCSES is that its Gaussian mutation operator produces
a nice pressure toward the creation of classifiers that approximate the class boundary
accurately, which is especially important in problems with complex class boundaries.
That is, in XCSES , classifiers that are close to the class boundary will have small
strategy parameters, and so, Gaussian mutation is likely to produce new offspring that
are slightly different from their parents and that approximate the decision boundary
more accurately. In this case, as seen in the last section, crossover, despite being useful,
plays a secondary role. On the other hand, the search scheme presented by XCS GA

is very different. That is, the mutation operator of XCSGA performs a non-guided,
constant local search and has a lower effect with respect to the mutation of the ES
scheme. Thus, in XCSGA, crossover is mainly responsible for creating new promising
solutions; however, 2-point crossover may be very disruptive, especially when crossing
classifiers that are close to the class boundary. These observations highlight the need
of further studying the classical genetic operators in XCSGA and create some of them
that enable the fine-grained tuning of the condition of classifiers that lay closely to the
class boundary provided by XCSES .

Taking these observations as inspiration, in this section, we design a new crossover
operator that aims at (1) permitting the generation of a larger number of offsprings
with respect to 2-point crossover by enabling the modification of the interval values of
each variable and (2) being more sensitive in combining the information of the parents,
searching a balance between local search and exploration of new regions of the feature
space. The new operator is addressed as BLX crossover since it is inspired by the
BLX-α crossover operator of real-coded GAs [14]. The operator is defined for both
XCS-GA and XCS-ES. The following describes the new operator for both schemes of
XCS.

5.1 BLX Crossover for XCSGA

Given two parent classifiers p1 = (xp1
1 , xp1

2 , . . . , xp1
�) and p2 = (xp2

1 , xp2
2 , . . . , xp2

�),
where each variable is represented by the interval of feasible values x pi

i = [�pi
xi

, upi
xi

],
the BLX crossover operator generates the interval for each variable i of the two off-
spring classifiers o1 and o2 as follows. First, a random value α ranging in [0, 0.5] is gen-
erated. Then, the minimum lower bound cmin and the maximum upper bound cmax of
the two parents is computed, i.e., ci

min = min(�p1
xi

, �p2
xi

) and ci
max = max(up1

xi
, up2

xi
).

The distance between ci
max and ci

min is calculated: I = ci
max − ci

min. Finally, I is

used to generate the lower bound and the upper bound of the variable i of offspring o 1

and o2, that is,

�o1
xi

= cmin + α · I · rand({−1, 1}) (5)

�o2
xi

= cmin + (1 − α) · I · rand({−1, 1}) (6)

uo1
xi

= cmax + α · I · rand({−1, 1}) (7)

uo2
xi

= cmax + (1 − α) · I · rand({−1, 1}) (8)

where rand({−1, 1}) returns either -1 or 1 with the same probability.
There are two key differences between this new crossover scheme and 2-point

crossover. First, BLX crossover permits the generation of a larger number of differ-
ent offspring, since each variable is adjusted individually. On the other hand, 2-point
crossover does not modify the value of the variables, so restricting the possible off-
spring candidates. Second, α enables controlling the disruption in the generation of the
offspring. That is, low values of α would imply the generation of offspring that would
be very similar to one of the parents, performing a type of local search; conversely,
a large value of α would result in offspring whose conditions differ from their parent
ones, probably exploring new regions of the feature space. In addition, one of the off-
spring is generated considering α, while the other uses (1 − α). This combines the
generation of offspring which are close to their parents with the creation of solutions
that explore different regions of the solution space. For all these reasons, we consider
that the BLX crossover balances local search and innovation.

5.2 BLX Crossover for XCSES

The same strategy explained in the previous section is used in XCSES to cross the clas-
sifier condition. In addition, the vector of strategy parameters s 1 = (σp1

1 , σp1
2 , . . . , σp1

�)
of parent p1 and the vector of strategy parameters s2 = (σp2

1 , σp2
2 , . . . , σp2

�) of parent
p2 are crossed as follows. For each offspring oi, a new vector of strategy parameters

si = (σoi
1 , σoi

2 , . . . , σoi

�) (9)

is generated. σoi

j is a random number ranging in [c i
min − Iiα, ci

max + Iiα], where
ci
min = min(σp1

i , σp2
i), ci

max = max(σp1
i , σp2

i), and Ii = (ci
min − ci

max).

6 Experimental Results Using BLX Crossover

In this section, we continue the analysis provided in Sect. 4 by introducing the new
BLX crossover operator into the comparison of XCSES and XCSGA. For this purpose,
we follow the same experimental methodology: we ran experiments on the collection
of 12 real-world problems and compare the results by means of statistic tests. In the
following subsections, we first statistically compare the overall results and then provide
some further observations about the behavior of the new operator on particular data
sets.

6.1 Comparison of XCSGA and XCSES with BLX Crossover

We start our analysis by repeating the same experiments performed in Sect. 4.3, but
using BLX crossover in all the configurations. Table 5 provides the test performance
and standard deviation of XCSGA and XCSES with proportionate selection and tourna-
ment selection when the new BLX crossover operator is employed (see from the 2nd to
the 5th column of the table). In addition, as done in the previous experiments, we also
used truncation selection for XCSES , since this selection operator is widely used in the
ESs realm. To highlight the improvement provided by the different configurations that
use BLX crossover with respect to the original XCS system [29], that is, the scheme
that uses proportionate selection, random mutation, and 2-point crossover, the results
obtained with the original XCS are included in the last column of the table. The last
two rows of the table supply the average rank of each learning technique and its posi-
tion in the ranking. As proceeds, we report three analyses conducted on the results: (1)
the study of the improvement provided by BLX crossover for each particular learning
heuristic and configuration, (2) the comparison of the best XCS configuration among
the ones that use BLX and the original XCS, and (3) the comparison of the best con-
figuration with BLX crossover and the best configuration with the original crossover
operator.

First, we compared the results obtained with BLX crossover (see Table 5) with re-
spect to those achieved by the same learners but with their original crossover operator
(see Table 3). Table 6 summarizes the p-values obtained for this comparison according
to a Wilcoxon signed-ranks test. The pairwise analysis, at α = 0.05, permitted reject-
ing only the null hypothesis that the results obtained by XCSES with truncation selec-
tion and discrete crossover were, on average, equivalent to those achieved by the same
learner but with BLX crossover. In this case, BLX crossover enabled XCSES to evolve
significantly more accurate models. Further differences were not found. Neverthe-
less, it is worth noting the average improvement with which BLX crossover provided
XCSGA with tournament selection. In 8 out of the 12 tested problems, XCS GA with
BLX crossover built models that were more accurate than those created by XCS GA

with 2-point crossover.
Second, we compared the results obtained with the different schemes that use BLX

crossover and the original XCS (see Table 5). The three best ranked methods in the
comparison corresponded to configurations that used BLX crossover. More specif-
ically, XCSGA with the both types of selection and XCSES with tournament selec-
tion outperformed the original XCS scheme.This highlighted the suitability of the
new crossover operator. Note, moreover, that all the schemes of XCS GA with BLX
crossover had a better average rank than the schemes of XCS ES with BLX crossover,
which indicated that the GA-based schemes benefited more than the ES-based schemes
from the new BLX crossover operator. These better alignment of BLX crossover with
GA-based search was expected, since BLX crossover introduced a flexibility in the gen-
eration of offspring that was provided neither by the XCS GA original mutation operator
nor by the 2-point crossover operator. Conversely, in ES-based schemes, Gaussian mu-
tation already provided the system with enough flexibility to create new classifiers that
fit complex boundaries more accurately than their parents, and so, the improvement
produced by BLX crossover was moderate.

Table 5: Comparison of the test performance and standard deviation obtained by
XCSGA and XCSES with proportionate selection (ps) and tournament selection (ts).
Moreover, the results of XCSES with truncation selection (tr) are also provided. The
last column provides the results of the original definition of XCS, i.e., XCS-GA with
proportionate selection, random mutation, and 2-point crossover (tp). The last three
rows provide the average accuracy and standard deviation, the average rank, and the
position of each learner in the ranking.

DS XCSGA-ps XCSES-ps XCSGA-ts XCSES-ts XCSES-tr XCSGA-tp
bal 86.29 ± 1.85 85.39 ± 2.06 85.44 ± 1.91 85.55 ± 1.82 85.55 ± 1.61 83.20 ± 2.60
bpa 69.18 ± 2.66 65.89 ± 2.34 68.11 ± 2.35 68.11 ± 2.28 66.76 ± 3.10 68.21 ± 2.88
gls 69.94 ± 1.56 70.25 ± 2.27 71.65 ± 1.71 71.49 ± 1.71 69.16 ± 1.88 72.12 ± 1.98
h-s 39.51 ± 2.14 38.64 ± 2.09 38.76 ± 2.33 39.88 ± 2.54 43.21 ± 2.90 46.91 ± 2.04
irs 95.11 ± 0.63 95.11 ± 0.62 95.33 ± 0.58 95.11 ± 0.63 94.89 ± 0.66 95.33 ± 0.63
pim 75.22 ± 2.42 74.43 ± 2.99 74.65 ± 3.13 73.83 ± 3.47 74.65 ± 2.45 72.53 ± 2.75
tao 96.80 ± 2.76 96.77 ± 3.07 96.68 ± 3.21 96.61 ± 3.24 96.57 ± 3.03 91.22 ± 5.06
thy 97.36 ± 1.11 96.90 ± 1.17 97.05 ± 1.22 96.43 ± 1.47 96.74 ± 1.22 95.81 ± 1.29
veh 69.34 ± 3.72 69.23 ± 3.76 69.74 ± 3.67 70.21 ± 3.04 69.31 ± 3.19 71.79 ± 4.49
wbcd 95.66 ± 2.08 96.28 ± 1.66 96.33 ± 1.97 95.99 ± 1.73 96.33 ± 2.00 94.85 ± 1.99
wdbc 91.04 ± 2.16 91.33 ± 1.86 91.62 ± 2.23 91.97 ± 2.29 90.63 ± 2.06 91.09 ± 1.75
wne 95.88 ± 1.14 96.07 ± 0.94 96.25 ± 1.25 96.82 ± 1.28 95.13 ± 1.20 95.50 ± 1.34
Avg 81.78 ± 2.02 81.36 ± 2.07 81.80 ± 2.13 81.83 ± 2.12 81.58 ± 2.11 81.55 ± 2.40
Rank 3.00 4.08 2.67 3.17 4.29 3.79
Pos 2 5 1 3 6 4

Table 6: P-values of the comparison of the different configurations of XCS without
2-point crossover and and with BLX crossover.

XCSGA-ps XCSES-ps XCSGA-ts XCSES-ts XCSES-tr
p-value 0.52 0.83 0.47 0.77 0.05

We statistically compared the test performance of the six learning methods. The
multi-comparison Friedman’s test permitted rejecting the null hypothesis that all the
learners were statistically equivalent with p-value= 0.10. Nonetheless, neither the
Bonferroni-Dunn test nor the Holm’s procedure could detect any significant differ-
ence between the best ranked learner, i.e., XCSGA with tournament selection, and any
other learning technique. Therefore, we applied a pairwise analysis by means of the
Wilcoxon signed-ranks test at α = 0.10 to detect further differences. It is well known
that pairwise comparisons increase the risk of rejecting null hypotheses that are actu-
ally true. Herein, we assumed this risk with the aim of providing more information
about the excellence of the different methods. The pairwise analysis detected (1) that
XCSGA with tournament selection generated models that were significantly more ac-
curate than those created by XCSES with proportionate and truncation selection and
(2) that XCSES with tournament selection outperformed XCSES with proportionate

(a) Domain (b) XCSGA 2pt

(c) XCSGA BLX (d) XCSES BLX

Figure 4: Decision boundaries obtained with original scheme of XCS GA with (b) 2-
point crossover, (c) XCSGA with BLX crossover, and (d) XCSES with BLX crossover
in the (a) tao problem.

selection. No further significant differences were identified by the statistical analysis.
Third, we compared the best configuration with BLX crossover—i.e., XCS GA with

tournament selection—with the best configuration with the original crossover—i.e.,
XCSES with tournament selection. The Wilcoxon signed-ranks test did not permit re-
jecting the null hypothesis that both configuration yielded the same results on average
with p-value= 0.69. Nevertheless, note that XCSGA with BLX crossover and tourna-
ment selection outperformed XCSES with the original crossover operator and tourna-
ment selection in 7 data sets, obtained equivalent results in 2 data sets, and provided
poorer results in only 3 data sets. This results highlight the robustness of XCS GA with
BLX crossover with respect to the other configurations that use the original crossover
operators of XCSGA and XCSES .

6.2 Study of the Effect of BLX Crossover on Particular Data sets

We further studied the behavior of the new crossover operator by analyzing the differ-
ences in each particular training data set with the aim of providing a glimpse of under
which problem characteristics BLX crossover performed the best. In particular, we
observed that BLX crossover (1) may help XCS evolve accurate models in dense prob-
lems and (2) may prevent the system from over-fitting in complex domains. In what
follows, we further elaborate these two hypotheses and show results on particular data
sets that support them.

First, we identified that the new operator yielded excellent results in dense prob-

lems, i.e., problems with a large number of instances with respect to the number of
variables. Notice, for example, the excellent results obtained by all the configurations
of XCS that use BLX in the bal and the tao problems with respect to XCSGA with
2-point crossover. To our knowledge, these are, by far, the best results obtained by
XCS with these two problems [2, 5]. We hypothesized that this was because the new
operator was able to fit complex decision boundaries more accurately since it had a
less disruptive behavior than the 2-point crossover operator. To analyze this hypothe-
sis, we did the following experiment. We ran XCSGA and XCSES on the tao problem
(see the domain in figure 4(a)) and plotted the decision boundaries of the evolved rules
sets. The decision boundaries were plotted by testing the resulting rule set with a dense
test set that contained instances equally distributed around the feature space and de-
picting with different colors these instances depending on the class predicted by the
system. We selected the tao problem for this analysis since it consists of two vari-
ables, and so, the class boundaries can be easily illustrated. Besides, tao has curved
class boundaries that pose a big challenge for interval-based LCSs [2]. Figure 4(b)
shows the class boundaries obtained with XCSGA with 2-point crossover. Figures 4(c)
and 4(d) show the same information but for XCSGA and XCSES with BLX crossover.
Note that XCSGA with 2-point crossover evolved models that obviated the two inner
concepts of the tao problem; moreover, the class boundary defined by the system pre-
sented an abrupt shape, concentring a big amount of the test error. Conversely, when
BLX crossover was used, XCSGA and XCSES were able to define very accurate class
boundaries and to discover the two inner concepts of the problem. It is worth not-
ing that this specificity-driven pressure that seems to be present in the BLX crossover
operator did not go in detriment of the test accuracy in problems where the training
instances were more sparse, as shown in the general results presented in Table 5.

We also detected that BLX crossover may help prevent the system from over-fitting
in complex problems. That is, in some specific problems of the comparison such as
bal, bpa, and tao, we identified that XCSGA with 2-point crossover tended to over-
fit the training instances, i.e., to create rules that covered few instances with the aim
of maximizing the training accuracy in complex problems. To illustrate this behav-
ior, Figure 5 shows the evolution of the training and the test performance achieved by
XCSGA with 2-point crossover and BLX crossover in the bal problem. Note that, with
2-point crossover, the training accuracy increased during the 100 000 learning itera-
tions, but the test accuracy started decreasing at about 10 000 iterations. This indicated
that XCSGA with 2-point crossover was over-fitting the training instances in this par-
ticular problem. On the other hand, the results denoted that BLX crossover operator
prevented XCS from over-fitting. Notice that the test accuracy remained oscillating
around 86%.

Finally, let us note that the examples provided in this analysis do not enable us to
extract general conclusions of the problem characteristics for which BLX crossover
is better suited, but to identify some possible problem difficulties with which BLX
crossover may deal more efficiently. In further work, these initial observations will be
investigated in more detail, trying to identify which types of genetic operators are more
suited for different problem characteristics.

The overall results presented in the section resulted in two key conclusions. The
first conclusion is that the GA-based search could achieve better results, on average,

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 20000 40000 60000 80000 100000

%
a
c
c
u
r
a
c
y

Learning iteration

Train GA-BLX
Test GA-BLX
Train GA-2pt
Test GA-2pt

Figure 5: Evolution of the training and test accuracy of XCS GA with 2-point crossover
and BLX crossover in the bal problem.

than the ES-based counterpart if the crossover operator is properly designed. Further-
more, as second conclusion, we also showed the suitability of BLX crossover with
respect to the original crossover operators of both XCSES and XCSGA. More specifi-
cally, we illustrated the advantages of BLX crossover in some particular domains of the
comparison which contained a large number of instances per dimension and complex
class boundaries. Therefore, the analysis permitted not only increasing our understand-
ing of how the different genetic operators work but also improving them, enabling the
system to evolve models that were more accurate than those created by the original
XCS.

7 Summary, Conclusions, and Further Work

In this paper, we analyzed and improved the genetic discovery in the XCS classifier
system when the system is applied to extract classification models, represented by
populations of interval-based rules, from domains that are described by continuous
attributes. We proposed to systematically analyze the role of the two main genetic op-
erators, that is, mutation and crossover, and use the observations resulting from this
analysis to design new enhanced operators.

First, we started with the analysis of mutation. We proposed to replace the discov-
ery component, driven by a GA, with an ES with the aim of providing a fine tuning
of classifiers that are close to the class boundaries. Then, we studied the effect of the
mutation operator in XCSGA and XCSES , detecting that the ES permitted the system
to create more accurate models. Thereafter, we introduced crossover in the compari-
son, evidencing a clear improvement of the results. In any case, on average, XCS ES

resulted in the most accurate models of the comparison.
Second, we turned our attention to the crossover operator. We designed a new

crossover operator, addressed as BLX crossover, with the aim of diminishing the dis-
ruption of the typical crossover operators of XCS and balancing the amount of lo-

cal search and crossbreeding introduced by the operator. We experimentally showed
the advantages of BLX crossover with respect to the original crossover operators of
XCSES and XCSGA. In particular, the GA-based discovery component benefited
more from the new crossover operator than the ES-based discovery component; that
is, XCSGA resulted in the most accurate models on average. Moreover, we further ana-
lyzed the effect of the new operator on particular data sets and provided some examples
in which BLX crossover enabled XCS to fit complex class boundaries more accurately
and prevented the system from over-fitting the training instances.

Globally, the study conducted along this paper served to increase our understand-
ing of how genetic operators work in XCS. This better comprehension was used as a
tool for designing new genetic operators, which let XCS extract models that were more
accurate than those created by the original version of the system. In addition to all the
notes provided while discussing the results, the experimentation highlighted two cru-
cial aspects that should be addressed as further work. First, the results clearly showed
that XCS could benefit from new genetic operators. Therefore, more research must be
conducted on this regard, designing new operators that consider more information that
is available during the genetic evolution. Second, results also indicated that different
problems benefited from different genetic operators. That is, the performance in prob-
lems such as tao was impressively increased by the use of an ES-based search scheme
and further improved by the introduction of BLX crossover. Nonetheless, XCS GA

with the original genetic operators was the best performer in few problems such as h-
s. These observations indicate that problems with different types of complexities may
benefit from different genetic operators. As further work, we will study different strate-
gies to extract characteristics from the training data sets and link these characteristics
to the properties of the genetic operators with the aim of designing hyper-heuristics
that enable the system to chose the genetic operators that may maximize the system
performance according to apparent complexity of each particular problem.

Acknowledgements

The authors would like to thank Ministerio de Educaci ón y Ciencia for its support
under project TIN2005-08386-C05-04 and Generalitat de Catalunya for its support
under grants 2005FI-00252 and 2005SGR-00302.

References

[1] A. Asuncion and D. J. Newman. UCI machine learning repository:
[http://www.ics.uci.edu/∼mlearn/ MLRepository.html]. University of California,
2007.

[2] E. Bernadó-Mansilla and J.M. Garrell. Accuracy-based learning classifier sys-
tems: Models, analysis and applications to classification tasks. Evolutionary
Computation, 11(3):209–238, 2003.

[3] E. Bernadó-Mansilla and T.K. Ho. Domain of competence of XCS classifier
system in complexity measurement space. IEEE Transactions on Evolutionary
Computation, 9(1):1–23, 2005.

[4] E. Bernadó-Mansilla, X. Llorà, and J.M. Garrell. XCS and GALE: A comparative
study of two learning classifier systems on data mining. In Advances in Learning
Classifier Systems, volume 2321, pages 115–132. Springer, 2002.

[5] M. V. Butz. Rule-based evolutionary online learning systems: A principled ap-
proach to LCS analysis and design, volume 109 of Studies in Fuzziness and Soft
Computing. Springer, 2006.

[6] M. V. Butz, D. E. Goldberg, and P. L. Lanzi. Gradient descent methods in learning
classifier systems: Improving XCS performance in multistep problems. IEEE-
TEC, 9(5):452–473, 2005.

[7] M. V. Butz, K. Sastry, and D. E. Goldberg. Strong, stable, and reliable fitness
pressure in XCS due to tournament selection. GPEM, 6(1):53–77, 2005.

[8] M. V. Butz and S. W. Wilson. An algorithmic description of XCS. In Proc.
IWLCS, volume 1996, pages 253–272. Springer, 2001.

[9] J. Demšar. Statistical comparisons of classifiers over multiple data sets. JMLR,
7:1–30, 2006.

[10] O.J. Dunn. Multiple comparisons among means. Journal of the American Statis-
tical Association, 56:52–64, 1961.

[11] M. Friedman. The use of ranks to avoid the assumption of normality implicit in
the analysis of variance. Journal of the American Statistical Association, 32:675–
701, 1937.

[12] M. Friedman. A comparison of alternative tests of significance for the problem
of m rankings. Annals of Mathematical Statistics, 11:86–92, 1940.

[13] D. E. Goldberg. Genetic algorithms in search, optimization & machine learning.
Addison Wesley, 1st edition, 1989.

[14] F. Herrera, M. Lozano, and J. L. Verdegay. Tackling real-coded genetic algo-
rithms: Operators and tools for behavioural analysis. Artificial Intelligence Re-
view, 12(4):265–319, 1998.

[15] Y. Hochberg. A sharper Bonferroni procedure for multiple tests of significance.
Biometrika, 75:800–802, 1988.

[16] J. H. Holland. Adaptation in natural and artificial systems. The University of
Michigan Press, 1975.

[17] J. H. Holland. Adaptation. In R. Rosen and F. Snell, editors, Progress in Theo-
retical Biology, volume 4, pages 263–293. New York: Academic Press, 1976.

[18] S. Holm. A simple sequentially rejective multiple test procedure. Scandinavian
Journal of Statistics, 6:65–70, 1979.

[19] T. Kovacs. Deletion schemes for classifier systems. In GECCO’99: Proceedings
of the 1999 Genetic and Evolutionary Computation Conference, pages 329–336.
Morgan Kaufmann, 1999.

[20] A. Orriols-Puig and E. Bernadó-Mansilla. Evolutionary rule-based systems for
imbalanced datasets. Soft Computing Journal, doi=10.1007/s00500-008-0319-7,
2008.

[21] A. Orriols-Puig, J. Casillas, and E. Bernadó-Mansilla. Genetic-based machine
learning systems are competitive for pattern recognition. Evolutionary Intelli-
gence, doi=10.1007/s12065-008-0013-9, 2008.

[22] A. Orriols-Puig, K. Sastry, P.L. Lanzi, D.E. Goldberg, and E. Bernadó-Mansilla.
Modeling selection pressure in XCS for proportionate and tournament selection.
In GECCO’07, volume 2, pages 1846–1853. ACM Press, 2007.

[23] I. Rechenberg. Cybernetic solution path of an experimental problem, volume
1122. 1965.

[24] I. Rechenberg. Evolution strategie: Optimierung technischer systeme nach
prinzipien der biologischen evolution. Frommann-Holzboog, 1973.

[25] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. Cam-
bridge, MA: MIT Press, 1998.

[26] T.G. Dietterich. Approximate statistical tests for comparing supervised classifi-
cation learning algorithms. Neural Computation, 10(7):1895–1924, 1998.

[27] F. Wilcoxon. Individual comparisons by ranking methods. Biometrics, 1:80–83,
1945.

[28] S. W. Wilson. Classifier fitness based on accuracy. Evolutionary Computation,
3(2):149–175, 1995.

[29] S. W. Wilson. Get real! XCS with continuous-valued inputs. In Learning Clas-
sifier Systems. From Foundations to Applications, pages 209–219, Berlin, 2000.
Springer-Verlag.

