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ability of multilogistic regression models including nonlinear effects of the
covariates as a multi-class pattern recognition technique to discriminate highly overlapping analytical signals
using a very short number of input covariates. For this purpose, three methodologies recently reported by us
were applied based on the combination of linear and nonlinear terms which are transformations of the linear
ones by using evolutionary product unit neural networks. To test this approach, drinking water samples
contaminated with volatile organic compounds such as benzene, toluene, xylene and their mixtures were
classified in seven classes through the very close data provided by their headspace-mass spectrometric
analysis. Instead of using the total ion current profile provided by the MS detector as input covariates, the
three-parameter Gaussian curve associated to it was used as linear covariates for the standard multilogistic
regression model, whereas the product unit basic functions or their combination with the linear covariates
were used for the nonlinear models. The hybrid nonlinear model, pruned by a backward stepwise method,
provided the best classification results with a correctly classified rate for the training and generalization sets
of 100% and 76.2%, respectively. The reduced dimensions of the proposed model: only three terms, namely
one initial covariate and two basis product units, enabled to infer interesting interpretations from a chemical
point of view.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction
Qualitative analysis is increasingly being viewed as an emerging
branch of analytical chemistry [1] due to the combination of powerful
instrumental techniques, such as chromatography with mass spectro-
metric or diode-array detector, Fourier-transform infrared spectro-
scopy, chemical microsensors array, etc. with chemometric methods
which expands the possibilities of the identification. “Classification
according to specific criteria” is the general definition for qualitative
testing [2], which also includes the well-known screening methods
used for finding out if a sample contains one or more specific analytes
based on a binary response. So, in a broad sense, qualitative analysis
is really a simple classification methodology. Several chemometric
methods have been used in Analytical Chemistry for qualitative ana-
lysis as supervised or unsupervised classification tools. Although a
detailed review of these methods is out of the scope of this paper,
some choices are factor analysis, cluster analysis (CA), K-Nearest
Neighbours (KNN), linear and quadratic discriminant analysis (LDA &
Building (Annex), Rabanales
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QDA), partial least squares discriminant analysis (PLS-DA), and soft
independent modelling of class analogy (SIMCA), among others [3,4].
In addition, artificial neural networks (ANNs), with their pattern re-
cognition and modelling capabilities, have currently become powerful
classification tools in qualitative chemical analysis [5,6].

Multilogistic regression is a special case of generalized linearmodel
methodology where the assumptions of normality and constant vari-
ance of the residuals are not satisfied [7,8]. Multilogistic regression
models have demonstrated their accuracy in many classification
frameworks often providing classifiers easily interpretable that can
be used for the appropriate selection of the adequate model in real
supervised learning situations [9–11]. In the last few years, multi-
logistic regression models have shown their potential as classification
and screening tools particularly in clinical analysis, where they have
been applied for predicting the probability of suffering a certain
disease in terms of the levels of different biomarkers [12–15] or for
providing a positive or negative diagnostic over a form of cancer on the
basis of different indicators such as serum proteins profile [16,17],
concentrations of certain trace elements in bodily fluids [18] and
plasma levels of organochlorines [19], among others. In addition, other
classification problems have been successfully addressed with multi-
logistic regression such as the characterization of honey from its
mineral content [20], the characterization of pharmaceuticals based on

mailto:qa1sirom@uco.es
http://dx.doi.org/10.1016/j.chemolab.2008.03.005
http://www.sciencedirect.com/science/journal/01697439


180 C. Hervás et al. / Chemometrics and Intelligent Laboratory Systems 92 (2008) 179–185
the determination of polymorphic purity [21] and the authentication
of virgin olive oils of very close geographical origins by near infrared
spectroscopy [22].

In this work, the potential of a methodology recently developed by
our research group [23] is evaluated as an analytical classification tool
for the discrimination between classes that provide highly overlapped
signals using a very short number of initial covariates. Specifically, the
methodology implies an enhancement of the standard multilogistic
regression by including the nonlinear effects of the covariates on the
basis of the hybridization of the initial and nonlinear transformed
covariates. These nonlinear transformed covariates are constructed
with product unit (PU) basis functions given by products of the inputs
of a product unit neural network (PUNN) raised up to real powers,
which capture the possible strong interactions between the variables.
PU functions correspond to a special class of feed-forward neural
networks, namely PUNN, introduced by Durbin and Rumelhart [24]
and subsequently developed by other authors [25–30]. In this way,
standard and product unit basis functions covariates multilogistic
regression models were tested [23], including the standard multi-
logistic regression model (MR) based on the initial covariates and two
other MR models using product unit basis functions: the first con-
structed only on the PU basis functions of the PUNNs (MRPU) and the
second with both PUs and initial covariates (MRIPU).

The classification efficiency on the training and the generalization
data sets of these models are compared among themselves and also
with those provided by classical statistical algorithms such as LDA and
QDA. Moreover, recent common classification methods of artificial
intelligence, such as support vectormachine (SVM) and decision trees,
are applied and compared to these MR models. SVM [31,32] is a very
popular tool in machine learning that explores the kernel techniques
with good geometric explanation, and which usually performs very
well in many classification applications; whereas the decision tree
algorithm for classification constructs decision trees, where the leaves
represent classifications and the branches represent conjunctions of
features that lead to those classifications [33,34].

To test this classification tool, a complex analytical pattern
recognition problem was investigated, namely the classification of
drinking water samples contaminated by the volatile organic com-
pounds (VOCs) benzene, toluene and xylene based on headspace-mass
spectrometric (HS-MS) data. The seven classes of water samples
contain one of these compounds as well as their binary or ternary
mixtures. The complexity of this chemical system is related to highly
overlapped MS signals provided by the classes in study. In addition, a
data treatment methodology is proposed to extract useful chemical
information from the volatile profile provided by the HS-MS based on
the decreasing of the number of input parameters, andwhose aim is to
use as simple multilogistic regression models as possible. So, the
number of covariates, used also as inputs to the PUNNs, was estimated
by the Levenberg–Marquardtmethod in the form of a three-parameter
Gaussian curve associated with the total ion current profile provided
by the MS detector using a similar methodology to the one based on
Gaussian and Weibull functions [35–39], previously reported by us.
These compounds were also chosen because they belong to the group
of most dangerous water pollutants. Their recognition is very
important due to differences in toxicity of these compounds and
their impact on human health and the environment.

Despite the relatively low number of patterns used for the training
and generalization sets, the proposed approach provided good results
for the qualitative investigation of these VOCs in polluted waters, and
to our knowledge no study on the use of nonlinear transformed
covariates multilogistic regression models has to date been reported
in this context. In addition, it provides amore quality information than
the classical screening methods based on the typical binary response,
and it can be extended to others methodologies that insert analytes
from a sample directly into a MS, such as membrane introduction MS,
among others.
2. Classification method

In multiclassification problems, measurements xi (i=1,2,…,k) are
made from a single individual (or object), and individuals are classified
into one of J classes on the basis of these measurements. In this paper,
the common technique of representing the class levels with a “1-of-J”
encoding vector y=(y(1),y(2),…y(J)) is used. Thus, from a training sam-
ple defined as D={(xn,yn);n=1,2,…,N} in which xn=(x1n,…,xkn) is the
vector of measurements taking values in Ω⊂Rk and yn is the class
level of the nth individual, the query is to find a decision function
C:Ω→ {1,2,…J} based on generalized linear regression models, with
new covariates based on PU basis functions for classifying the indi-
viduals. A misclassification occurs when a decision rule C assigns an
individual (based onmeasurements vector) to a class jwhen it is actually
coming from a class l≠ j.

The logistic regression methods are common statistical tools for
modelling discrete response variables; such as multiple, binary, cate-
gorical and ordinal responses. In the multiple and categorical cases,
the conditional probability that x belongs to class l verifies:

p y lð Þ ¼ 1jx
� �

N 0; l ¼ 1;2; :::; J; xaX ð1Þ

and sets the function:

fl x;qlð Þ ¼ log
p y lð Þ ¼ 1jx� �
p y Jð Þ ¼ 1jxð Þ ; l ¼ 1;2; :::; J; xaX ð2Þ

where θl is theweight vector corresponding to the class l and fJ(x,θJ)≡0
considering the J class as the base class. Under a multilogistic regres-
sion model, the probability that x belongs to class l is then given by

p y lð Þ ¼ 1jx;q
� �

¼ exp fl x;qlð Þ
PJ
j¼1

exp fj x;qj
� � ; l ¼ 1;2; :::; J ð3Þ

where θ=(θ1,θ2,…,θJ −1).
An individual should be assigned to the class which has the maxi-

mum probability, given the vector measurement x, that is: C(x)= l̂ ,
where l̂ =arg maxl fl(x,θ̂l), for l=1,…, J. In this work, a multilogistic
regression model developed recently by us based on the combination
of linear and nonlinear terms [23] is applied to qualitative analysis.
The nonlinear part of the function fl(x,θl) corresponds to a special class
of feed-forward neural networks, namely PUNNs, an alternative to the
standard sigmoidal neural networks, which are based on multipli-
cative nodes instead of additive ones, which have been mainly used
for regression problems [24–30].

In a supervised learning process, the components of the weights
vector θ=(θ1,θ2,…,θJ−1) are estimated from the training data set D. To
achieve the maximum likelihood for the estimation of θ, one can mini-
mize the negative log-likelihood function. The estimation of the vector
parameter θ̂ is carried out by means of a hybrid procedure. So, the
methodology is based on the combination of an evolutionary algorithm
(global explorer) and a local optimization procedure (local exploiter)
carried out by the standard maximum likelihood optimization method.
The process of estimation of the basis function coefficients is structured
in three steps and more specific details about it and the corresponding
optimization procedure can be seen in [23].

It is important to remark some characteristics of the first step of the
methodology, an evolutionary programming (EP) algorithm that find
the weights and the number of PU functions for the MRPU and MRIPU
models. The population-based evolutionary algorithm for the archi-
tectural design and estimation of real-coefficients was selected on the
basis that crossover is not used due to its potential disadvantages in
evolving artificial networks [40], although it has common points with
other evolutionary algorithms reported in the literature [40–45]. The
search begins with an initial population selected randomly. On each
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generation of the population is updated using a population-update
algorithm. The population is subject to the operations of replication
and parametric and structural mutation. More details about the
specific characteristics of this evolutionary algorithm are reported
elsewhere [28,29,46].

3. Experimental

Experimental data matrix was obtained by using the HS-MS data
provided by a set of 63 drinking water samples spiked with individual
standards of benzene, toluene or xylene as well as with binary or
ternary mixtures of them at concentrations between 5 and 30 μg/l.
Table 1 shows the composition of the resulting seven classes. The
samples were usually prepared in duplicated as described elsewhere
[47] and the total ion current profile provided by the MS detector
operated in full scan mode with a range from m/z 50 to 110 at
10.3 scans/s was used as the analytical signal. The experimental design
is based on the random distribution of the water samples of each class
using 2/3 and 1/3 for the training and generalization sets, respectively
(see Table 1).

The Levenberg–Marquardt algorithm was used to estimate the
three-parameter Gaussian function associated with the total ion
current profile provided by the MS detector. These parameters were
defined as follows: Î m (maximum abundance), t̂m (time corresponding
Table 1
Composition of the training and generalization sample sets

Training sample set, μg/l Generalization sample set, μg/l

Benzene Toluene Xylene Benzene Toluene Xylene

Class 1 5 5
10 10
15 30
15
30
30

Class 2 5 5
10 30
10 30
15
15
30

Class 3 5 10
5 15
10 30
15
30
30

Class 4 5 10 5 5
5 30 5 30
10 30 30 30
15 15
15 15
30 30

Class 5 5 10 5 5
5 30 5 30
10 30 30 30
15 15
15 15
30 30

Class 6 5 5 10 30
5 10 30 30
5 30 30 30
5 30
15 15
15 15

Class 7 5 10 5 5 5 5
5 10 5 5 30 5
5 30 5 10 30 10
15 15 15
15 15 15
30 30 30
to the maximum abundance) and B̂(dispersion of the abundance
values from Im). In order to use these parameters as inputs to the
assayed PUNNs, they were scaled over the range 0.1 to 0.9. Thus, the
new scaled variables were expressed as follows: Îm⁎, t̂m⁎ and B̂⁎. After
optimizing the network models, estimations should be de-scaled
according to the same procedure.

Multilogistic regression models were fitted to the data obtained by
means of a multilogistic regression modelling procedure included in
SPSS 12.0 for Windows [48]. The multilogistic regression was per-
formed with a backward conditional method, which selects the most
significant covariates. To measure the classifier's performance, the
output was compared to the observed outcome of the seven classes,
and the correctly classified rate (CCR) for training and generalization
sets were obtained, CCRT and CCRG, respectively; the CCR being de-
fined as follows:

CCR ¼ 1
N

XN

n¼1

I C xnð Þ ¼ yn

� � ð4Þ

where I(d ) is the zero-one loss function. A good classifier tries to
achieve the highest generalization CCR value in a given problem.

The parameters used in the EP algorithmwere the same in the two
product unit basis functions multilogistic regression models. We
consider the same parameter values than those reported in [49] due to
their robustness. The exponents wji and the coefficients βj

l were
initialized in the [−5,5] interval. The size of the population is N=1000
and the maximum number of hidden nodes is m=4. The number of
nodes that can be added or removed in a structural mutation is within
the [1,2] interval, whereas the number of connections that can be
added or removed in a structural mutation is within the [1,6] interval.
The number of runs of the EP algorithm was 30 with 200 generations
for each run.

Results are compared using LDA, QDA, SVM and the C4.5 tree
inducer algorithm for classification. Regarding the classical statistical
algorithms, it is well known that if the input variables have a Gaussian
distribution andwe assume that the variance–covariance matrices are
equal, then LDA produces the best Bayes error over the training set,
and if the variance–covariance matrices are different the same
property is satisfied for QDA. The C4.5 classification tree inducer
algorithm is run with the standard options: the confidence threshold
for pruning is 0.25, the minimum number of instances per leaf is 2. For
pruning, both subtree replacement and subtree rising are considered.
The SMO and J48 algorithms are a java implementation of the SVM
and C4.5methodologies, which are part of theWekamachine learning
workbench [50] release 3.4.0, using the default parameter values.

4. Results and discussion

Direct sampling MS methods are based on the insertion of the
analytes from a sample into a MS using a simple interface with
minimal sample preparation and no prior chromatographic separation
[51–53]. The recent development of a methodology based on the
direct coupling of a headspace sampler with a mass spectrometry
detector (HS-MS) has enabled a drastic reduction in analysis time
increasing the sample throughput [54]. Generally, data can be
obtained by using the mass spectrum that represents the sum of
intensities of all the ions detected during the data-acquisition time.
Afterwards, it is necessary to extract the information contained in the
profile signal and convert it into useful information, which requires
the use of chemometric approaches. To date, most applications of HS-
MS have focused on qualitative analysis related to quality control in
foods [55–58] and environmental pollution [59,60] by applying
different classification techniques such as LDA, CA, SIMCA and KNN
among others.

As stated above, the goal of this work was to evaluate the potential
of a multilogistic regression model recently reported by us [23] in



Fig. 1. Flow diagram of the whole chemometric protocol.
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qualitative analysis. This methodology, which includes the nonlinear
effects of the covariates, has only been applied to benchmark
problems. To evaluate the response of the methodology in qualitative
analysis, several strategies were merged in this work: 1) the selection
of an analytical classification problem in which the classes involved
provided analytical signals with a high degree of overlapping, such as
the case of the HS-MS profiles obtained in the analysis of drinking
waters contaminated by VOCs; 2) the use of a limited number of
variables, such as those estimated by the Levenberg–Marquardt
Fig. 2. A) Typical HS-MS profiles corresponding to drinking water samples containing: 1) 15 μ
of toluene; 5) 5 μg/l of benzene and 30 μg/l of xylene; 6) 15 μg/l of toluene and 15 μg/l of xyle
corresponding to: 1) un-contaminated and 2) polluted drinking water with a mixture cont
parameter Gaussian distribution. (o) Experimental data and (–) Gaussian curve.
method in the form of a three-parameter Gaussian curve associated
with the total ion current profile provided by the MS detector; and 3)
the use of the PU basis functions as nonlinear terms for the multi-
logistic regression models. Fig. 1 shows a schematic diagram of the
multilogistic regression approaches tested in this paper for the classi-
fication of assayed polluted drinking water samples.

4.1. Treatment of the HS-MS data

The volatile profiles provided by the HS-MS instrument corre-
sponding to the seven classes of contaminated drinking waters under
study are shown in Fig. 2A, in which a representative profile of each
case is included. As can be seen, although the classes containing
benzene and toluene give narrower bands (e.g. see peaks 1 and 4) and
those containing xylene provide wider ones (e.g. see peaks 3 and 5),
the profiles were very similar in general, which makes clear the high
overlapping grade of the bands of the different classes. On the other
hand, Fig. 2B shows the volatile profile of an un-contaminated and
contaminated drinking water (sample 4 in Fig. 2A) in order to evaluate
the contribution of the background signal. As can be seen, the signal
provided by the analytes can be successfully differentiated from the
background resulting in a net signal as shown in Fig. 2C.

The shape of the analyte volatile profile suggests that it should be
modelled with a pre-determined function so that its definite para-
meters can be used as the initial covariates for the MR model, also
obtaining the PU basis functions for the MRPU and MRIPU models.
This situation provides simpler MR models as well as reduces PUNN
complexity and learning time, which is of great practical interest.
Taking into account that the resulting analyte volatile profile bands are
practically symmetric, the three-parameter Gaussian function was
found to be the best choice for modelling HS-MS data. As stated above,
the equation corresponding to this function is defined by the following
parameters: Î m (maximum abundance), t̂m (time corresponding to the
maximum abundance) and B̂ (dispersion of the abundance values
from Î m). Fig. 2C shows the fit provided by the three-parameter
Gaussian function on the volatile profile obtained in the HS-MS
g/l of benzene; 2) 15 μg/l of toluene; 3) 10 μg/l of xylene; 4) 10 μg/l of benzene and 30 μg/l
ne; and 7) 15 μg/l of benzene, 15 μg/l of toluene and 15 μg/l of xylene. B) HS-MS profiles
aining 10 μg/l of benzene and 30 μg/l of toluene. C) HS-MS response fitted to a three-



Fig. 3. Functional scheme of the neural network based on PU basis functions. w1,…,wm

and β0,…,βm are the regression coefficients of the model. Other symbols are defined in
the text.
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analysis of the drinking water spiked with a binary mixture of
benzene and toluene (sample 4 in Fig. 2A). Upon examining both
curves and from the estimated statistical parameters, it can be
concluded that the three-parameter Gaussian distribution is a fine tool
for modelling this kind of HS-MS data.

4.2. Estimation of PU basis functions

Product unit basis functions covariates multilogistic regression mo-
dels were designed exchanging the classical initial covariates for PU
basis functions (MRPU),whicharenonlinear themselves, and combining
both PU basis functions and the initial covariates (MRIPU). Instead of
selecting standard sigmoidal functions, which are based on additive
functions, we selected PU basis functions taking into account that
PUNNs have an increased information capacity and the ability to form
higher-order combinations of inputs [24].

In order to estimate the PUbasis functions, the classification ability of
different PUNNmodels, (the general scheme of a PUNNmodel is shown
in Fig. 3) was compared in terms of topology, number of connections,
Table 2
Accuracy, statistical results and PU basis and discriminant functions for the best model obta

PUNN features

Connection CCRT

Range topology Mean±1.96×SD Mean±1.96×SD Best

3:5:6–3:6:6 37.9±8.8 87.9±9.2 97.6

PU basis functions

PÛ1: (B̂⁎)−0.40 PÛ2: (B̂⁎

PÛ4: (B̂⁎)−1.63 (t̂m⁎)2.47 PÛ5: (B̂⁎

Discriminant functions (DF)

DF1: 4.64−11.4 PÛ1−2.44 PÛ2+2.29 PÛ3−3.61 PÛ4+7.30 PÛ5

DF2:−3.29−4.04 PÛ2+4.09 PÛ4+6.12 PÛ5

DF3:−5.89−1.80 PÛ2+12.9 PÛ4+3.20 PÛ5

DF4: −3.38+0.52 PÛ1−9.25 PÛ2+0.97 PÛ5

DF5: −5.28+5.29 PÛ1−1.28 PÛ2+7.69 PÛ4

DF6: −2.18−1.57 PÛ2+6.15 PÛ4+4.09 PÛ5
homogeneity (confidence interval) and CCR by using network models
with three nodes in the input layer (the three-parameter of theGaussian
function), and six nodes in the output layer (one less than the number of
classes as stated in Section 2); thus, 3:5:6 and 3:6:6 architectures were
tested.

As shown in Table 2, the classification of the polluted drinking
water samples using the best PUNN model, which included five PU
basis functions in its hidden layer, is not very satisfactory, and therefore
the use of another chemometric approaches such asMRmodels can be
an interesting choice in order to improve the CCRG values. These PU
basis functions also provided useful information from a chemical point
of view. In fact, the more relevant PU basis functions (see the
discriminant functions, DFs, in Table 2) are PÛ2, PÛ4 and PÛ5 which
depend on the initial variables t̂ m⁎ and B̂⁎, that is, the time correspond-
ing to themaximum abundance of the total ion current profile and the
dispersion of the abundance values from it. From these results it is clear
that the Î m

⁎ values are not necessary for the classification of the
contaminated water samples when using PUNNs.

4.3. Evaluation of the multilogistic regression models

As stated above, threemultilogistic regressionmodels were tested:
MR, MRPU and MRIPU and their features are compared in Tables 3–5;
in particular, Table 3 shows the DFs for each model, which depend on
the following covariates: Î m

⁎ , B̂⁎ and t̂ m⁎ for the MR; PÛ1 to PÛ5 for
MRPU; and t̂m⁎, PÛ1 and PÛ4, for MRIPU model, and Table 4 shows the
rate of the number of cases that were correctly classified (confusion
matrix) for each model. Regarding classification ability (see Table 5),
all models provided CCRT values of 100%; however, the best value for
the generalization set (CCRG) was achieved by using theMRIPUmodel.
Table 5 also shows the results given by other classification algorithms
for comparison purposes, such as the classical LDA and QDA
algorithms as well as SMO and J48 algorithms implemented for the
SVM and C4.5 classification methods. These results justify the use of
theMRmodels proposed in this work to solve the addressed analytical
problem. In view of the CCRT values in Table 5, it can be considered
that there is overfitting in MR models; however, if such high
percentages of good classification are not achieved in the training
process, the CCRG values are not higher than 66.7%.

By analyzing these results, some chemical interpretations can be
drawn from the characteristics of the DFs and the confusion matrix.
From the sign and value of the coefficients of the DFs (these functions
are related to the discrimination power of one class with respect to the
other classes) it can be derived that in general B̂⁎and t̂ m⁎ are the most
significant covariates for the addressed classification problem.
Regarding the proposed MRIPU model, the DFs only depend on the
ined by using evolutionary PUNNs (over 30 runs)

CCRG

Worst Mean±1.96×SD Best Worst

76.2 63.5±12.7 71.4 52.4

)4.04(t̂m⁎)−1.06 PÛ3: (Î m)1.91

)−3.05 (t̂m⁎)2.75



Table 3
Discriminant functions (DF) for the MR, MRPU and MRIPU models

MR model

fl= α̂0+ α̂ l, Î m
⁎ Î m
⁎+ α̂ l,B̂⁎B̂⁎+α̂l,t̂m⁎

t̂ m⁎ l= 1,2,…,6

DF α̂ 0 α̂ l , I
ˆ

m
⁎ α̂ l , B

ˆ ⁎ α̂ l , t
ˆ
m
⁎

1 323.3 −65.5 −1074.6 875.9
2 223.1 −37.6 −1188.6 1188.2
3 5.6 210.9 −1269.2 1470.3
4 302.3 49.0 −929.9 661.9
5 57.9 44.9 −258.3 280.3
6 172.0 −41.5 −1041.6 1143.7

MRPU model

f1= β̂0+ β̂ l, PU
ˆ
1
PÛ1+ β̂l , PU

ˆ
2
PÛ2+ β̂l , PU

ˆ
3
PÛ3+ β̂l , PU

ˆ
4
PÛ4+ β̂l , PU

ˆ
5
PÛ5 l=1,2,…,6

DF β̂0 β̂ l , PU
ˆ
1

β̂ l , PU
ˆ
2

β̂ l , PU
ˆ
3

β̂ l , PU
ˆ
4

β̂ l , PU
ˆ
5

1 67.1 −447.3 0.7 −78.9 783.1 −312.6
2 −283.2 −550.0 1.2 −116.9 252.4 543.5
3 129.3 −563.3 −0.4 521.1 1108.2 −625.9
4 109.1 −181.3 −0.1 93.0 415.1 −294.0
5 −78.8 −63.9 −3.9 71.6 −19.2 200.4
6 −896.7 −503.6 2.0 −157.0 −246.9 1695.4

MRIPU model

f1= α̂ l′, t̂ m
⁎ t̂ m⁎+ β̂ l′ , PÛ1

PÛ1+ β̂ l′ , PÛ4
PÛ4 l=1,2,…,6

DF α̂l , t
ˆ
m
⁎ β̂ l′ , PUˆ 1

β̂ l , PU
ˆ
4

1 −394.0 −970.9 1359.2
2 −1238.6 −1235.2 2522.6
3 −2615.3 −1115.7 4164.4
4 666.8 −386.9 −445.4
5 −632.4 −140.2 995.0
6 −2710.6 −864.5 4149.9
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covariates t̂ m⁎ and B̂⁎ involved in three terms: one linear in t̂ m⁎ and
two nonlinear in PÛ1 and PÛ4, such as (B̂⁎)0.40 and (B̂⁎)−1.63(t̂⁎)2.47,
respectively. Taking into account the sign and value of the respective
coefficients of these DFs, it can be inferred that the PÛ4 covariate is the
one that exerts a more significant effect in the classification process,
except for the class 4 where t̂ m⁎ is the most relevant. In other words,
the interaction between the initial covariates B̂⁎ and t̂m⁎ is the key for
the classification of the polluted drinking waters because both are
involved in the most relevant term of the DFs and B̂⁎contributed in a
greater extend due to its negative exponent in the PU basis function
PÛ4=(B̂⁎)−1.63(t̂m⁎)2.47.

As stated above, Table 4 shows the confusion matrix obtained in
the classification of drinking waters by using the three models; it is
clear the better performance of the proposed MRIPU model for the
classification of these samples. Despite the better results provided by
the proposed model, only one sample of the class 2 is correctly
classified (the other models also misclassifying these samples). This
behaviour can be ascribed to the similar chemical composition of the
two unclassified samples in the class 2 (30 μg/l toluene) with other
two included in the class 4 (30 μg/l toluene+5 and 30 μg/l benzene,
Table 4
Rate of the number of cases in the generalization set that were classified correctly for
the models assayed: (MR, MRPU, MRIPU)

Class predicted/
target

l=1 l=2 l=3 l=4 l=5 l=6 l=7

l=1 (3, 3, 3) – – – – – –

l=2 – (1, 1, 1) – (2, 2, 2) – – –

l=3 – – (2, 1, 2) – – (1, 2, 1) –

l=4 (1, 0, 0) – – (2, 3, 3) – – –

l=5 – – – – (2, 2, 2) (1, 1, 1) –

l=6 – – (2, 3, 0) – – (1, 0, 3) –

l=7 – – – (0, 0, 1) (1, 1, 0) – (2, 2, 2)
respectively). Taking into account that benzene provides narrower
total ion current profile than toluene, its contribution to t̂m⁎ and B̂⁎ in
the mixture is less significant than the contribution of toluene, and
therefore a slight experimental error in the preparation and/or HS-MS
detection of these samples can originate this problem in the correct
classification of samples of the class 2.

5. Conclusions

As it has been shown throughout this study, a multilogistic
regression model recently reported by us, composed by original
covariates and their nonlinear transformations designed by using
evolutionary product unit neural networks has demonstrated to be a
powerful tool for multi-class pattern recognition in qualitative
analysis. Several chemical and chemometric conclusions can be
inferred from the results: (i) the improving of the standard MR
model by considering the nonlinear effects of the covariates. The
ensuing hybrid MR model provided better accurate results for the
classification of polluted drinking waters than the other MR alter-
natives tested and those achieved by the classical discriminant analysis
Table 5
Comparison of the quality achieved for the classification of polluted drinking waters
using discriminant analysis (LDA and QDA), support vector machine (SVM), model tree
algorithm (C4.5), standard multilogistic regression (MR) and multilogistic regression
using product unit basis functions methodologies (MRPU and MRIPU)

Algorithm CCRT CCRG

LDA 90.5 66.7
QDA 100.0 66.7
SVM 86.3 61.9
C4.5 85.7 66.7
MR 100.0 61.9
MRPU 100.0 57.1
MRIPU 100.0 76.2
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methodologies such as LDA and QDA and other common classification
techniques such as SVMandC4.5. (ii) The good results achieved in spite
of the complexity of the analytical problem selected for the evaluation
of the models: the classification of seven drinking waters contami-
nated with benzene, toluene, xylene or their mixtures at μg/l levels
using highly overlapping HS-MS data and with a minimum number of
patterns in the generalization test. (iii) The simplification of themodels
by using as initial covariates the three-parameter Gaussian curve
associated with the total ion current profile provided by the MS
detector, and (iv) the use of an evolutionaryalgorithm for obtaining the
proposed hybrid MR model. Thus, relationships can be inferred from
the initial covariates or their PU transformations on the classification
process in order to establish the relative influence of each one.
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