
Neural Networks 21 (2008) 951–961
www.elsevier.com/locate/neunet

Multilogistic regression by means of evolutionary product-unit
neural networks

C. Hervás-Martı́neza, F.J. Martı́nez-Estudillob,∗, M. Carbonero-Ruzb

a Department of Computer Science and Numerical Analysis of the University of Córdoba, Campus de Rabanales, 14071, Córdoba, Spain
b Department of Management and Quantitative Methods, ETEA, Escritor Castilla Aguayo 4, 14005, Córdoba, Spain

Received 5 November 2006; accepted 13 December 2007

Abstract

We propose a multilogistic regression model based on the combination of linear and product-unit models, where the product-unit nonlinear
functions are constructed with the product of the inputs raised to arbitrary powers. The estimation of the coefficients of the model is carried out
in two phases. First, the number of product-unit basis functions and the exponents’ vector are determined by means of an evolutionary neural
network algorithm. Afterwards, a standard maximum likelihood optimization method determines the rest of the coefficients in the new space
given by the initial variables and the product-unit basis functions previously estimated. We compare the performance of our approach with the
logistic regression built on the initial variables and several learning classification techniques. The statistical test carried out on twelve benchmark
datasets shows that the proposed model is competitive in terms of the accuracy of the classifier.
c© 2008 Elsevier Ltd. All rights reserved.

Keywords: Evolutionary neural networks; Multi-class classification; Multilogistic regression
1. Introduction

Multi-class pattern recognition has a wide range of
applications including handwritten digit recognition (Chiang,
1998), speech tagging and recognition (Athanaselis et al.,
2005), bioinformatics (Mahony et al., 2006) and text
categorization (Massey, 2003). Multi-class pattern recognition
is a problem of building a system that accurately maps an
input feature space to an output space of more than two
pattern classes. Whereas a two-class classification problem is
well understood, multi-class classification is relatively less-
investigated. In general, the extension from two-class to the
multi-class pattern classification problem is not trivial, and
often leads to unexpected complexity or weaker performances.
This paper presents a comprehensive and competitive study
in multi-class neural learning which combines different
elements such as multilogistic regression, neural networks and
evolutionary algorithms.

∗ Corresponding author. Tel.: +34 957222120; fax +34 957222107.
E-mail addresses: chervas@uco.es (C. Hervás-Martı́nez),

fjmestud@etea.com (F.J. Martı́nez-Estudillo), mcarbonero@etea.com
(M. Carbonero-Ruz).

0893-6080/$ - see front matter c© 2008 Elsevier Ltd. All rights reserved.
doi:10.1016/j.neunet.2007.12.052
The Logistic Regression model (LR) has been widely used
in statistics for many years and has recently been the object
of extensive study in the machine learning community. This
traditional statistical tool arises from the desire to model the
posterior probabilities of the class level given its observation
via linear functions in the predictor variables. Although logistic
regression is a simple and useful procedure, it poses problems
when applied to a real-problem of classification, where we
cannot always make the stringent assumption of additive and
purely linear effects of the covariates. A technique to overcome
these difficulties is to augment/replace the input vector with
new variables, basis functions, which are transformations of
the input variables, and then to use linear models in this
new space of derived input features. One first approach is to
augment the inputs with polynomial terms to achieve higher-
order Taylor expansions, for example, with quadratic terms
and multiplicative interactions. Once the number and the
structure of the basis functions have been determined, the
models are linear in these new variables and the fitting is
a standard procedure. Methods like sigmoidal feed-forward
neural networks (Bishop, 1995), projection pursuit learning
(Friedman & Stuetzle, 1981), generalized additive models
(Hastie & Tibshirani, 1990), and PolyMARS (Kooperberg,

http://www.elsevier.com/locate/neunet
mailto:chervas@uco.es
mailto:fjmestud@etea.com
mailto:mcarbonero@etea.com
http://dx.doi.org/10.1016/j.neunet.2007.12.052


952 C. Hervás-Martı́nez et al. / Neural Networks 21 (2008) 951–961
Bose, & Stone, 1997), which is a hybrid of multivariate adaptive
splines (MARS) (Friedman, 1991) specifically designed to
handle classification problems, can all be seen as different
nonlinear basis function models. The major drawback of these
approaches is in stating the typology and the optimal number of
the corresponding basis functions.

Our approach, named Multilogistic Regression by using
Linear and Product-Unit models (MRLPU), overcomes the
nonlinear effects of the covariates by proposing a multilogistic
regression model based on the combination of linear and
product-unit models, where the nonlinear basis functions of
the model are given by the product of the inputs raised to
arbitrary powers. These basis functions express the possible
strong interactions between the covariates, where the exponents
are not fixed and may even take real values. The nonlinear basis
functions of the proposed model correspond to a special class
of feed-forward neural network, namely Product-Unit Neural
Networks, PUNN, introduced by Durbin and Rumelhart (1989).
They are an alternative to standard sigmoidal neural networks
and are based on multiplicative nodes instead of additive ones.

One reason for adding linear terms to the nonlinear product
unit is to yield models that are simpler and easier to interpret. In
particular, if a covariate appears only linearly in the final model,
then the model is a traditional parametric model with respect
to that covariate. A second reason is to reduce the variance
associated with the overall modeling procedure, and a third is
to reduce the likelihood of ending up with unnecessary terms in
the final model.

Logistic regression models are usually fit by maximum
likelihood, where the Newton–Raphson algorithm is the
traditional way to estimate the maximum a posteriori
parameters. Usually, the algorithm converges since the
log-likelihood is concave. However, in our approach, the
nonlinearity of the PUNN implies that the corresponding
Hessian matrix is generally indefinite and the likelihood has
more local maximum. Besides, it is important to point out that
the computation of the Newton–Raphson algorithm becomes
prohibitive when the number of variables is large. These
reasons justify, in our opinion, the use of an alternative heuristic
procedure to estimate the parameters of the model.

The estimation of the coefficients is carried out in several
steps. In a first step, an evolutionary algorithm determines the
number of nonlinear basis functions in the model and their
corresponding exponents in the basis functions. The nonlinear
part of the model can be represented in a neural network
framework, the aforementioned product-unit neural network.
Evolutionary Artificial Neural Networks (EANNs) have been a
key research area in the past decade providing a better platform
for optimizing both network performance and its architecture
simultaneously. Therefore, an evolutionary algorithm is applied
to the design of the structure and training of the weights in
a product-unit neural network. This step can be seen as a
global search in the coefficients’ model space. Once the basis
functions have been determined by the evolutionary algorithm,
we consider a transformation of the input space by adding the
nonlinear transformations of the input variables given by the
basis functions obtained by the evolutionary algorithm. The
final model is linear in the set of variables formed by these new
variables and the initial covariates. Now, the Hessian matrix
is definite and fitting proceeds with the standard maximum
likelihood optimization method. Finally, we use a backward
stepwise procedure, pruning variables sequentially to the model
previously obtained, until no further pruning can be made to
improve the fit.

We evaluate the performance of our methodology on twelve
datasets taken from the UCI repository (Blake & Merz, 1998).
First, we compare MRLPU to linear multilogistic regression
and then, we evaluate our approach by comparing it to other
state-of-the-art learning schemes.

This paper is organized as follows: Section 2 shows the
main related works; Section 3 is devoted to a description of
the multilogistic regression model based on product-unit neural
networks; Section 4 describes the MRLPU methodology;
Section 5 explains the experiments carried out; and finally,
Section 6 summarizes the conclusions of our work.

2. Related works

In this section, we give a brief overview of the methods
which use different basis functions for moving beyond linearity.
We also point out some recent studies which show a close
relationship between logistic regression and machine learning
methods.

The conventional statistical method of discriminant analysis
(Hastie, Tibshirani, & Friedman, 2001) for solving classifica-
tion problems assumes that the measurement vectors in each
class follow a multivariate normal distribution. If the covari-
ance matrices of the measurements in each class are the same,
the method shows that the regions created by Bayes’ decision
rule are separated by boundaries which are linear in the input
variables. Dropping the conventional assumption that covariate
matrices are equal, Bayes’ decision rule gives quadratic bound-
aries. In many examples, the inadequacy of linear or quadratic
discriminant analysis for the purpose of classification made it
necessary to look for approaches able to approximate highly
nonlinear class boundaries. Instead of assuming specific distri-
butions for the inputs and using them to calculate conditional
class probabilities, these classes can be estimated directly from
the training sample cases.

A number of methods based on nonparametric regression,
which are capable of approximating highly nonlinear class
boundaries in classification problems, have been developed in
the last few years. Those methods more closely related to our
proposal are listed below.

Generalized additive models (Hastie & Tibshirani, 1990)
comprise automatic and flexible statistical methods that may
be used to identify and characterize nonlinear effects. They
provide a natural first approach to relaxing strong linear
assumptions. The generalized additive model approximates
multidimensional functions as a sum of univariate curves.
Univariate functions are estimated in a flexible manner, using an
algorithm whose basic building block is a scatter plot smoother;
for example, the cubic smoothing spline. The additive model
manages to retain interpretability by restricting nonlinear



C. Hervás-Martı́nez et al. / Neural Networks 21 (2008) 951–961 953
effects in the predictors so that they enter into the model
independently of one another. Additive logistic regression
(Friedman, Hastie, & Tibshirani, 1998) is an example of a
generalized additive model.

In order to make interactions between predictors possible,
the generalized additive model can be further refined.
Kooperberg et al. (1997) propose an automatic procedure that
uses linear splines and their tensor products. This method is
a hybrid of the MultiAdaptive Regression Splines (MARS)
(Friedman, 1991) called PolyMars, specifically designed to
handle classification problems. It makes the model grow in
a forward stage-wise fashion like MARS, but uses at each
stage quadratic approximation to multinomial log-likelihood
to search for the next basis function pair. Once found, the
enlarged model is fit by maximum likelihood, and the process
is repeated.

The spline model has been used by other authors. For
example, Bose (1996) presented a method named Classification
Using Splines (CUS), somewhat similar to the neural network
methods, which used additive cubic splines to estimate
conditional class probabilities. Later, the same author presented
a modification of CUS, named successive projection method,
to solve more complex classification problems (Bose, 2003).
Although this method was presented using CUS, it is possible to
replace CUS by any nonparametric regression-based classifier.

From a different point of view, neural networks have been an
object of renewed interest among researchers, both in statistics
and computer science, due to the interesting results obtained in
a wide range of classification problems where they have been
applied. Many different types of neural network architectures
have been used, but the most popular one has been the single-
hidden-layer feed-forward network. Related to our nonlinear
model, we underline the Polynomial Feed-forward Neural
Networks (PFNNs), which have been used in various practical
tasks requiring high-order nonlinear descriptions. In Nikolaev
and Iba (2003), the authors find the polynomial network
structure by means of a population-based search technique
relying on the genetic programming paradigm, and then adjust
the best discovered network weights by an specially derived
back-propagation algorithm. A more complete perspective and
development of this approach can be found in Nikolaev and Iba
(2006).

Another remarkable approach to the combination of
regression techniques and neural networks can be found in
Song et al. (2006), where the authors propose a method to
integrate regression formulas as prior knowledge with kernel
functions as a Knowledge-Based Neural Networks model
(KBNN) for improved prediction and knowledge adaptation.
The models incorporate different nonlinear regression functions
as neurons in their hidden layer and adapt these functions
through incremental learning from data in particular areas of
the space.

Amongst the numerous approaches using neural networks in
classification problems, we focus our attention on Evolutionary
Artificial Neural Networks (EANNs) which have been a key
research area in the past decade, providing a better platform
for optimizing both network performance and architecture
simultaneously. Miller, Todd, and Hedge (1989) proposed
evolutionary computation as a very good candidate to search
the space of architectures because the fitness function
associated with that space is complex, noisy, non-differentiable,
multi-modal and deceptive. Since then, many evolutionary
programming methods have been developed for evolving
artificial neural networks, see for example Angeline, Saunders,
and Pollack (1994), Fogel (1993), Garcı́a-Pedrajas, Hervás-
Martı́nez, and Muñoz-Pérez (2002), Kasobov (2006), and Yao
and Liu (1997). In these works we find several methods that
combine architectural evolution with weight learning and use
different mutation operators including, in some cases, partial
training after each architectural mutation, or approaches that
hybridize EANNs with a local search technique to improve the
slowness of the convergence. For a very interesting review on
the matter, see Yao (1999).

On the other hand, logistic regression has recently gained
popularity in the machine learning community due to its close
relations to well-known techniques such as Support Vector
Machine (SVM) (Vapnik, 1999), AdaBoost (Freund & Shapire,
1996) and artificial neural networks (Schumacher, Robner,
& Vach, 1996; Vach, Robner, & Schumacher, 1996). Vapnik
(1999) compared LR and SVM in terms of minimizing the
loss function, and showed that the loss function of LR can
be very well approximated by SVM loss with multiple knots
(SVMn). Friedman et al. (1998), discussed SVM, LR and
boosting on top of their different loss functions. Lebanon
and Lafferty (2002) showed that the only difference between
AdaBoost and LR is that the latter requires the model to be
normalized to a probability distribution. The logistic regression
model can be seen as equivalent to a perceptron with a logistic
activation function representing the simplest neural network. A
comparative study of logistic regression and neural networks
can be found in Schumacher et al. (1996) and Vach et al. (1996).

Finally, in a previous work (Hervás & Martı́nez-Estudillo,
2007), the authors combine logistic regression and neural
network models to solve binary classification problems.
The error function considered and the neural network
framework used there were designed specifically for two-class
classification problems.

3. Multilogistic regression and product-unit neural net-
works

In the classification problem, measurements xi , i =

1, 2, . . . , k, are taken on a single individual (or object), and
the individuals are to be classified into one of J classes on
the basis of these measurements. It is assumed that J is finite,
and the measurements xi are random observations from these
classes. A training sample D =

{
(xn, yn); n = 1, 2, . . . , N

}
is available, where xn = (x1n, . . . , xkn) is the vector of
measurements taking values in Ω ⊂ Rk , and yn is the class
level of the nth individual. We adopt the common technique of
representing the class levels using a “1-of-J” encoding vector
y =

(
y(1), y(2), . . . , y(J )

)
, such as y(l)

= 1 if x corresponds to
an example belonging to class l and y(l)

= 0 otherwise. Based
on the training sample, we wish to find a decision function



954 C. Hervás-Martı́nez et al. / Neural Networks 21 (2008) 951–961
C : Ω → {1, 2, . . . , J } for classifying the individuals. In
other words, C provides a partition, say D1, D2, . . . , DJ , of
Ω , where Dl corresponds to the lth class, l = 1, 2, . . . , J ,
and measurements belonging to Dl will be classified as coming
from the lth class. A misclassification occurs when a decision
rule C assigns an individual (based on measurements vector) to
a class j when it is actually coming from a class l 6= j .

To evaluate the performance of the classifiers we define the
corrected classified rate by CC R =

1
N

∑N
n=1 I (C(xn) = yn),

where I (·) is the zero-one loss function. A good classifier tries
to achieve the highest possible CC R in a given problem. It
is usually assumed that the training data are independent and
identically distributed samples from an unknown probability
distribution. Suppose that the conditional probability that x
belongs to class l verifies: p

(
y(l)

= 1
∣∣ x

)
> 0, l =

1, 2, . . . , J, x ∈ Ω , and set the function:

fl(x, θl) = log
p

(
y(l)

= 1
∣∣ x

)
p

(
y(J ) = 1

∣∣ x
) , l = 1, 2, . . . , J, x ∈ Ω ,

where θl is the weight vector corresponding to class l and
f J (x, θJ ) ≡ 0. Under a multinomial logistic regression, the
probability that x belongs to class l is then given by

p
(

y(l)
= 1

∣∣∣ x, θ
)

=
exp fl (x, θl)

J∑
j=1

exp f j
(
x, θ j

) , l = 1, 2, . . . , J,

where θ = (θ1, θ2, . . . , θJ−1).
For binary problems (J = 2), this is known as logistic

regression (or soft-max in neural network literature).
The classification rule coincides with the optimal Bayes’

rule. In other words, an individual should be assigned to the
class which has the maximum probability, given the vector
measurement x:

C(x) = l̂, where l̂ = arg max
l

fl(x, θ̂l), for l = 1, . . . , J.

On the other hand, due to the normalization condition we have:

J∑
l=1

p
(

y(l)
= 1

∣∣∣ x, θ
)

= 1,

and the probability for one of the classes (the last one, in our
case) need not be estimated. Observe that we have considered
f J (x, θJ ) ≡ 0.

The usual parametric approach to the multinomial logistic
regression problem is to use the linear model in the input
variables:

fl(x, θl) = θ0l + θ1l x1 + · · · + θkl xk, l = 1, 2, . . . , J − 1,

where θl = (θ0l , θ1l , . . . , θkl) , l = 1, 2, . . . , J − 1.
In practice, however, it may be desirable to model the

predictor effects by using smooth, nonlinear functions. A
generalized additive model (Hastie & Tibshirani, 1990) for
multinomial logistic regression is given by

fl(x, θl) = θ1l(x1) + · · · + θkl(xk), l = 1, 2, . . . , J − 1,

where θil(xi ), i = 1, 2, . . . , k are one-dimensional functions.
In order to make interactions between predictors possible,
the additive model can be further refined. For example, the
model proposed by Kooperberg et al. (1997) is given by sums
of polynomial splines and their tensor products. They consider
interactions of two variables at most to ameliorate the course of
dimensionality.

Our logistic regression model proposal is based on the
combination of the standard linear model and a nonlinear term
constructed with basis functions given by products of the inputs
raised to real powers, which capture possible strong interactions
between the variables.

The general expression of the model is given by:

fl(x, θl) = αl
0 +

k∑
i=1

αl
i xi +

m∑
j=1

βl
j

k∏
i=1

x
w j i
i ,

l = 1, 2, . . . , J − 1,

where θl = (αl , βl , W), αl
= (αl

0, α
l
1, . . . , α

l
k), β

l
=(

βl
1, . . . , β

l
m

)
and W = (w1, w2, . . . , wm), with w j =

(w j1, w j2, . . . , w jk), w j i ∈ R.
The nonlinear part of fl(x, θl) corresponds to a special class

of feed-forward neural networks, namely Product-Unit Neural
Networks (PUNNs), introduced by Durbin and Rumelhart
(1989) and subsequently developed by other authors (Ismail
& Engelbrecht, 2000; Janson & Frenzel, 1993; Leerink et al.,
1995; Martı́nez-Estudillo et al., 2006a, 2006b). They are an
alternative to standard sigmoidal neural networks and are
based on multiplicative nodes instead of additive ones. This
class of multiplicative neural networks comprises such types
as sigma–pi networks and product-unit networks. In contrast
to the sigma–pi unit, product units use a power function to
control the strength of propagation for each link, the exponents
are not fixed and may even take real values. Advantages of
PUNNs include: increased information capacity and the ability
to form higher-order combinations of inputs. They are universal
approximators and it is possible to obtain upper bounds of the
VC dimension of product-unit neural networks that are similar
to those obtained for sigmoidal neural networks (Schmitt,
2001). Despite these obvious advantages, — PUNNs have
a major drawback that their training is more difficult than
the training of standard sigmoidal-based networks (Durbin &
Rumelhart, 1989). The main reason for this difficulty is that
small changes in the exponents can cause large changes in the
total error surface. Hence, networks based on product units
have more local minima and a greater probability of becoming
trapped in them. It is well known (Janson & Frenzel, 1993)
that back-propagation is not efficient in training product units.
Several efforts have been made to develop learning methods for
product units (Leerink et al., 1995; Martı́nez-Estudillo et al.,
2006b; Saito & Nakano, 2002), mainly in a regression context.

4. Multilogistic regression linear product-unit neural
networks methodology (MRLPU)

In the supervised learning context, the components of the
weight vectors θ = (θ1, θ2, . . . , θJ−1) are estimated from the



C. Hervás-Martı́nez et al. / Neural Networks 21 (2008) 951–961 955
training dataset D. To perform the maximum likelihood (ML)
estimation of θ, one can minimize the negative log-likelihood
function

L(θ) = −
1
N

N∑
n=1

log p
(

yn

∣∣ xn, θ
)

=
1
N

N∑
n=1

[
−

J∑
l=1

y(l)
n fl(xn, θl) + log

J∑
l=1

exp fl(xn, θl)

]
.

The error surface associated with the model is very convoluted
with numerous local optima. The nonlinearity of the model
with respect to the parameters θl , and the indefinite character
of the associated Hessian matrix do not recommend the use
of gradient-based methods to maximize the log-likelihood
function. Moreover, the optimal number of basis functions of
the model (i.e. the number of hidden nodes in the product-unit
neural network) is unknown. Thus, the estimation of the vector
parameter θ̂ is carried out by means of a hybrid procedure
described below.

The methodology proposed is based on the combination
of an evolutionary algorithm (global explorer) and a local
optimization procedure (local exploiters) carried out by the
standard maximum likelihood optimization method. In a first
step, an evolutionary algorithm (EA) is applied to design
the structure and training of the weights of a product-
unit neural network. The evolutionary process determines
the number m of product-unit basis functions in the model,
and the corresponding vector W = (w1, w2, . . . , wm) of
exponents. Once the basis functions have been determined
by the evolutionary algorithm, we consider a transformation
of the input space by adding the nonlinear transformations
of the input variables given by the basis functions obtained
by the evolutionary algorithm. The model is linear in these
new variables and the initial covariates. The remaining
coefficient vector α and β are calculated by the maximum
likelihood optimization method. Finally, we use a backward
stepwise procedure, pruning variables sequentially to the model
previously obtained, until no further pruning can be made to
improve the fit.

4.1. Estimation of the model coefficients

In this paragraph we describe the different aspects of the
MRLPU methodology in detail. The process is structured in
four steps:

Step 1. We apply an evolutionary neural network algorithm to
find the basis functions

B(x, Ŵ) =
{

B1(x, ŵ1), B2(x, ŵ2), . . . , Bm(x, ŵm)
}

corresponding to the nonlinear part of f (x, θ). We have to
determine the number of basis functions m and the weight
vector W = (w1, w2, . . . , wm).

To apply evolutionary neural network techniques, we
consider a product-unit neural network with the following
structure (Fig. 1): an input layer with a node for every input
variable; a hidden layer with several nodes; and an output layer
Fig. 1. Model of a product-unit-based neural network.

with nodes, one for each category. There are no connections
between the nodes of a layer and none between the input and
output layers either. The activation function of the j th node in
the hidden layer is given by B j (x, w j ) =

∏k
i=1 x

w j i
i where w j i

is the weight of the connection between input node i and hidden
node j and w j = (w j1, . . . , w jk). The activation function of
the output node l is given by

gl(x, βl , W) = βl
0 +

m∑
j=1

βl
j B j (x, wj),

where βl
j is the weight of the connection between the hidden

node j and the output node l. The transfer function of all output
nodes is the identity function.

The weight vector W = (w1, w2, . . . , wm) is estimated by
means of an evolutionary neural network algorithm (detailed
in Section 4.2) that optimizes the error function given by the
negative log-likelihood for N observations associated with the
product-unit model:

L∗(β, W) =
1
N

N∑
n=1

[
−

J−1∑
l=1

y(l)
n gl(xn, βl , W)

+ log
J−1∑
l=1

exp gl(xn, βl , W)

]
.

Although in this step the evolutionary process obtains a
concrete value for the β vector, we only consider the estimated
weight vector Ŵ = (ŵ1, ŵ2, . . . , ŵm), which builds the basis
functions. The value for the β vector will be determined in step
3 together with the α coefficient vector.

Step 2. We consider the following transformation of the input
space by including the nonlinear basis functions obtained by
the evolutionary algorithm in step 1:

H : Rk
→ Rk+m

(x1, x2, . . . , xk) → (x1, x2, . . . , xk, z1, . . . , zm),

where z1 = B1(x, ŵ1), . . . , zm = Bm(x, ŵm).



956 C. Hervás-Martı́nez et al. / Neural Networks 21 (2008) 951–961
Step 3. We minimize the negative log-likelihood function for N
observations:

L(α, β) =
1
N

N∑
n=1

[
−

J∑
l=1

y(l)
n (αlxn + βlzn)

+ log
J∑

l=1

exp(αlxn + βlzn)

]
,

where xn = (1, x1n, . . . , xkn). Now, the Hessian ma-
trix of the negative log-likelihood in the new variables
x1, x2, . . . , xk, z1, . . . , zm is semi-definite positive. Therefore,
we could apply Newton’s method, also known in this case as It-
eratively Reweighted Least Squares (IRLS). Although there are
other methods to perform this optimization, none clearly out-
performs IRLS (Minka, 2003). The estimated vector coefficient
θ̂ = (α̂, β̂, Ŵ) determines the model:

fl(x, θ̂) = α̂l
0 +

k∑
i=1

α̂l
i xi +

m∑
j=1

β̂l
j

k∏
i=1

x
ŵ j i
i ,

l = 1, 2, . . . , J − 1.

Step 4. In order to select the final model, we use a backward
stepwise procedure: we start with the full model with all
the covariates, initial and PU, pruning variables to the model
sequentially and successively, until no further pruning can be
made to improve the fit. At each step, we select the least
significant covariate in the first discriminant function, i.e., the
one which shows the greatest critical value (p-value) in the
hypothesis test, where the associated coefficient equal to zero
is the hypothesis to be contrasted. The selected covariate is
deleted if this does not reduce the fit. If it holds and the
deletion of the covariate reduces the fit, we repeat the same
process with the second discriminant function, choosing its
least significant covariate, which does not necessarily coincide
with the one selected for the first function. We continue with
this process until we get to the last discriminant function. If
none of the covariates is deleted, we restart with the second least
significant covariate in each discriminant function, following
the procedure previously described. The procedure ends when
all the tests for each covariate in each function provide p-values
smaller than the fixed significance level, or when none of the
two chosen covariates in any of the functions is deleted.

4.2. Evolutionary algorithm

Among the different paradigms of Evolutionary Compu-
tation, we have chosen Evolutionary Programming (EP) due
to the fact that we are evolving artificial neural networks.
The population-based evolutionary algorithm for architectural
design and the estimation of real-coefficients have points in
common with other evolutionary algorithms in the bibliography
(Angeline et al., 1994; Garcı́a-Pedrajas et al., 2002; Martı́nez-
Estudillo et al., 2006b; Yao & Liu, 1997). The search begins
with an initial population and, with each iteration, the popula-
tion is updated using a population-update algorithm. The pop-
ulation is subjected to the operations of replication and muta-
tion. Crossover is not used due to its potential disadvantages in
evolving artificial networks (Angeline et al., 1994).
The general structure of the EA is organized as follows:

(1) Generate a random population of size N .
(2) Repeat until the stopping criterion is fulfilled.

(a) Calculate the fitness of every individual in the
population.

(b) Rank the individuals with respect to their fitness.
(c) The best individual is copied into the new population.
(d) The best 10% of population individuals are replicated

and substitute the worst 10% of individuals.
Over that intermediate population we:

(e) Apply parametric mutation to the best 10% of
individuals.

(f) Apply structural mutation to the remaining 90% of
individuals.

We consider L∗(β, W) as the error function of an individual
g(·, β, W) of the population. Observe that g is a product-unit
neural network and can be seen as a multi-valuated function:

g
(
x, β, W

)
=

(
g1

(
x, β1, W

)
, . . . , gJ−1

(
x, βJ−1, W

))
.

The fitness measure is a strictly decreasing transformation of
the error function L∗(β, W ) given by A(g) =

1
1+L∗(β,W )

, where
0 < A(g) ≤ 1.

Parametric mutation is accomplished for each coefficient
w j i , βl

j of the model with Gaussian noise:

w j i (t + 1) = w j i (t) + ξ1(t), βl
j (t + 1) = βl

j (t) + ξ2(t),

where ξk(t) ∈ N (0, αk(t)), k = 1, 2, represents a one-
dimensional normally distributed random variable with mean
0 and variance αk(t). Once the mutation is performed, the
fitness of the individual is recalculated and the usual simulated
annealing (Kirkpatric, Gellat, & Vecchi, 1983) is applied. Thus,
if 1A is the difference in the fitness function before and after
the random step, the criterion is: if 1A ≥ 0, the step is
accepted, and if 1A < 0, the step is accepted with a probability
exp(1A/T (g)), where the temperature T (g) of an individual g
is given by T (g) = 1 − A(g), 0 < T (g) < 1.

The variance αk(t) is updated throughout the evolution.
There are different methods to update the variance. We use one
of the simplest methods: the 1/5 success rule of Rechenberg
(1975). This rule states that the ratio of successful mutations
should be 1/5. Therefore, if the ratio of successful mutations
is greater than 1/5, the mutation deviation should increase;
otherwise, the deviation should decrease. Thus:

αk(t + s) =

(1 + λ)αk(t) if sg > 1/5
(1 − λ)αk(t), if sg < 1/5
αk(t) if sg = 1/5,

where k = 1, 2, sg is the frequency of successful mutations
over s generations and λ = 0.1. The adaptation tries to avoid
being trapped in local minima and to speed up the evolutionary
process when the searching conditions are suitable. It should
be pointed out that the modification of the exponents w j i is
different from the modification of the coefficients βl

j , therefore
α1(t) � α2(t).



C. Hervás-Martı́nez et al. / Neural Networks 21 (2008) 951–961 957
Table 1
Datasets used for the experiments

Data set Instances Numeric attributes Binary attributes Nominal attributes Inputs Classes Class distribution

Pima-indians 768 8 0 0 8 2 500, 268
Australian card 690 6 4 5 51 2 307, 383
Ionosphere 351 33 1 – 34 2 126, 225
Heart-statlog 270 13 – – 13 2 150, 120
Breast-cancer 286 – 3 6 15 2 201, 85
German 1000 6 3 11 61 2 700, 300
Balance-scale 625 4 – – 4 3 288, 49, 288
Vehicle 846 18 – – 18 4 240, 240, 240, 226
Hypothyroid 3772 7 20 2 29 4 3481, 194, 95, 2
Iris 150 4 0 0 4 3 50, 50, 50, 50
Lymphografy 148 3 9 6 38 4 2, 81, 61, 4
Glass 214 9 0 0 9 6 70, 17, 76, 13, 9, 29
Structural mutation implies a modification in the structure
of the function and allows the exploration of different re-
gions in the search space, helping to keep the diversity of the
population. There are five different structural mutations: node
addition, node deletion, connection addition, connection dele-
tion, and node fusion. These five mutations are applied sequen-
tially to each network. The mutations are performed as follows:

• Node addition. One or more nodes are added to the hidden
layer. The connections with the output nodes are chosen
randomly and have a random value in the interval [−I, I ].
The connections from the input layer are chosen randomly
and its values are also random values in an interval [−O, O].

• Connection addition. Connection addition mutations are first
performed in the hidden layer and then in the output layer.
When adding a connection from the input layer to the hid-
den layer, a neuron from each layer is selected randomly,
and then the connection is added with a random weight. A
similar procedure is performed from the hidden to the output
layer.

• Node deletion. One or more nodes, together with their con-
nections, are selected randomly and deleted.

• Connection deletion. In the same way, connection deletion
mutation is first performed in the hidden layer and then in the
output layer, choosing randomly the origin neuron from the
previous layer and the target neuron from the mutated layer.

• Node fusion. Two randomly selected nodes, a and b, are
replaced by a new node c, which is a combination of the
two. The connections common to both nodes are kept with a
weight given by:

βl
c = βl

a + βl
b, w jc =

w ja + w jb

2
.

Those connections not shared by the nodes are inherited by c
with probability 0.5 and their weight is unchanged.

The number of hidden nodes added in node addition, node
deletion and node fusion mutations is calculated as ∆MIN +

uT (g)[∆MAX − ∆MIN], u being a random uniform variable in
the interval [0, 1], T (g) = 1 − A(g) the temperature of the
neural net, and ∆MIN and ∆MIN a minimum and maximum
number of hidden nodes to be added. However, the connection
addition and deletion mutations are performed in a slightly
different way. For each mutated neural net, we apply connection
mutations sequentially, first, adding or deleting 1 + u[∆OnO ]

connections from the hidden layer to the output layer and then,
adding or deleting 1 + u[∆H nH ] connections from the input
layer to the hidden layer, u being a random uniform variable
in the interval [0, 1], ∆O and ∆H a previously defined ratio of
number of connections in the hidden and the output layer, and
nO and nH the current number of connections in the output and
the hidden layer.

Parsimony is also encouraged in evolved networks by
attempting the five structural mutations sequentially, where
node or connection deletion and node fusion is always
attempted before addition. Moreover, the deletion and fusion
operations are made with higher probability (T (g) for deletion
and fusion mutations and T 2(g) for addition ones). If a deletion
or fusion mutation is successful, no other mutation will be
made. If the probability does not select any mutation, one of
the mutations is chosen at random and applied to the network.

The parameters used in the evolutionary algorithm are
the same in all twelve problems analyzed below. We have
considered α1(0) = 0.5, α2(0) = 1, λ = 0.1 and s = 5.
The exponents w j i are initialized in the [−2, 2] interval, and
the coefficients βl

j are initialized in [−5, 5]. The maximum
number of hidden nodes is m = 9. The size of the population is
N = 1000. The number of nodes that can be added or removed
in a structural mutation is within the [1, 2] interval and the ratio
of the number of connections in the hidden and the output layer
is ∆O = 0.05 and ∆H = 0.3.

The stop criterion is reached whenever one of the following
two conditions is fulfilled: a number of generations is reached
(200 generations in our experiments) or the variance of the
fitness of the best ten percent of the population is less than 10−4.

We have done a simple linear rescaling of the input variables
in the interval [1, 2], X∗

i being the transformed variables. The
lower bound is chosen to avoid input values near 0, which could
produce very large values of the outputs for negative exponents.
The upper bound is chosen to avoid dramatic changes in the
outputs of the network when there are weights with large values
(especially in the exponents).

5. Experiments

In this section we compare MRLPU to a variety of learning
algorithms on twelve benchmark datasets taken from the UCI



958 C. Hervás-Martı́nez et al. / Neural Networks 21 (2008) 951–961
Table 2
Sample-mean difference between MRLPU and Mlogistic acc for each dataset
and its p-value

Difference p-value

Pima-indians 0.12 0.888
Australian card 2.46 0.006b

Ionosphere 2.58 0.167
Heart-statlog 2.19 0.084a

Breast-cancer 1.43 0.268
German 1.20 0.024b

Balance-scale 7.61 0.007b

Vehicle −0.63 0.357
Hypothyroid 0.58 0.078a

Iris 0.65 0.733
Lymphografy −0.72 0.591
Glass 1.90 0.462

a Significant at 0.1 level.
b Significant at 0.05 level.

repository (see Table 1). First, we compare MRLPU to linear
logistic regression using the initial covariates. Afterwards, we
evaluate the performance of our method compared to other
machine learning algorithms.

5.1. Linear logistic regression comparison

We compare our MRLPU approach to a standard version
of logistic regression that builds a full logistic model on
all attributes present in the data (Mlogistic). We use a 10-
fold stratified cross validation for the datasets considered. For
every dataset we perform ten runs of each fold. This gives
a hundred data points for each algorithm and dataset, from
which the average classification accuracy in the generalization
phase and the number of variables (original variables and PU)
are calculated. We consider this average as a measure of its
classification accuracy and number of variables.

We use the t-statistic for two related samples to compare
average percentages of correct classification, after having tested
the hypothesis of normality using the Saphiro–Wilks test.

Table 2 presents the sample-mean difference between
Mlogistic and MRLPU with its p-value for each dataset,
three of them corresponding to Australian Card, German, and
Balance-scale, which are significant in favour of MRLPU at
0.05 significance level, whereas two others, Heart-statlog and
Hypothoroid are significant at 0.1. The difference seems to
indicate that Mlogistic is more accurate than MRLPU in only
two cases. This all suggests that MRLPU is able to improve
logistic regression results in at least some of the problems.

Finally, Table 3 indicates the average size of Mlogistic and
MRLPU models in the 10-folds for each dataset. Size coincides
with the number of covariates in the dataset for logistic
regression. For the MRLPU model, we distinguish between
original covariates and product-unit basis functions (PU). Note
that the average size of the MRLPU (original covariates plus
PU) is smaller than that of Mlogistic in seven out of twelve
cases. These results combined with previous results showed
in Table 2 indicate that in some cases, even if MRLPU is not
more effective than Mlogistic as far as accuracy is concerned,
Table 3
Average size of Mlogistic and MRLPU models for each dataset

Covariates
Mlogistic MRLPU

Original PU

Pima-indiansa 8 3.4 2.6
Australian carda 38 27.9 1.8
Ionospherea 33 29.5 2.2
Heart-statloga 13 4.3 1.6
Breast-cancera 15 4.5 3.0
Germana 48 39.5 2.9
Balance-scale 4 1.7 3.7
Vehicle 18 14.7 4.4
Hypothyroid 29 25.9 4.6
Iris 4 3.0 2.3
Lymphografya 38 29.6 2.3
Glass 9 8.3 9.1

a MRLPU size is smaller than Mlogistic size.

we may reduce the model size if we use PU variables without
a significant reduction in the average classification results, as
Heart-statlog or Breast-Cancer examples show.

In short, we can highlight that the proposed model
sometimes outperforms Mlogistic significantly, determining a
good balance between the linear and nonlinear part.

5.2. Machine learning methods comparison

In this section we compare our MRLPU approach to recent
results (Landwehr, Hall, & Eibe, 2005) obtained using ten
different methodologies: Logistic model tree algorithm, LMT;
logistic regression with characteristics selection, SLogistic;
induction trees (C4.5 (Quinlan, 1993) and CART (Breiman
et al., 1984)); three logistic tree algorithms: NBTree, LTreeLin
and LTreeLog (Gama, 2004), and finally, multiple-tree models
M5’ (Wang & Witten, 1997) for classification, and boosted
C4.5 trees using AdaBoost.M1 with 10 and 100 boosting
iterations.

Table 4 shows the average test error rates of learners
generated by the previously mentioned algorithms (the results
have been taken from Landwehr et al. (2005)) and the MRLPU
model proposed.

Under the hypothesis of normality of the results, we test
for significant differences between the MRLPU model and the
aforementioned methods. Our decisions on the comparisons
will be determined by using confidence intervals for mean
differences. We choose the Dunnett (Hochberg & Tamhane,
1987) procedure to build these intervals: this is a multiple
comparison with a control method (MRLPU in this case) to
identify which of these algorithms are superior, similar or
inferior to MRLPU regarding CCR for each dataset.

The Dunnett method for multiple mean comparisons uses
k samples, each resulting from one of k different treatments, to
determine the following k−1 simultaneous confidence intervals
for the difference between each treatment mean and the mean
of control for a fixed confidence level:

µk − µi ∈ µ̂k − µ̂i ∓ Dσ̂

√
1
ni

+
1
nk

i = 1, . . . , k − 1,



C. Hervás-Martı́nez et al. / Neural Networks 21 (2008) 951–961 959
Table 4
Mean classification accuracy and standard deviation for Logistic Model Tree (LMT), Simple Logistic Regression (SLogistic), C4.5, CART, NBTree, LTreeLin, M5’
for classification, AdaBoost with 10 and 100 interactions and MRLPU

LMT SLogistic C4.5 CART NBTree LTreeLin

Pima-indians 77.08 ± 4.65 77.10 ± 4.65 74.49 ± 5.27 74.50 ± 4.70 75.18 ± 5.05 76.73 ± 4.83
Australian card 85.04 ± 3.84 85.04 ± 3.97 85.57 ± 3.96 84.55 ± 4.20 85.07 ± 4.03 84.99 ± 3.91
Ionosphere 92.99 ± 4.13 87.78 ± 4.99 89.74 ± 4.38 89.80 ± 4.78 89.49 ± 5.12 88.95 ± 5.10
Heart-statlog 83.22 ± 6.50 83.30 ± 6.48 78.15 ± 7.42 78.00 ± 8.25 80.59 ± 7.12 83.52 ± 6.28
Breast-cancer 74.91 ± 6.29 74.94 ± 6.25 74.28 ± 6.05 69.40 ± 5.25 70.99 ± 7.94 70.58 ± 6.90
German 75.37 ± 3.53 75.34 ± 3.50 71.25 ± 3.17 73.34 ± 3.66 74.07 ± 4.10 74.90 ± 3.47
Balance-scale 89.71 ± 2.68 88.74 ± 2.91 77.82 ± 3.42 78.09 ± 3.97 75.83 ± 5.32 92.86 ± 3.22
Vehicle 83.04 ± 3.70 80.45 ± 3.37 72.28 ± 4.32 72.37 ± 4.12 71.03 ± 4.55 79.52 ± 3.81
Hypothyroid 99.54 ± 0.39 96.78 ± 0.73 99.54 ± 0.36 99.66 ± 0.30 99.58 ± 0.38 98.98 ± 0.52
Iris 95.80 ± 4.89 95.93 ± 4.82 94.73 ± 5.30 96.00 ± 4.74 93.53 ± 5.64 98.00 ± 3.35
Lymphografy 84.10 ± 10.00 84.37 ± 9.97 75.84 ± 11.05 76.86 ± 9.87 80.89 ± 8.77 80.30 ± 8.98
Glass 69.15 ± 8.99 65.29 ± 8.03 67.63 ± 9.31 68.09 ± 10.49 70.16 ± 9.67 65.27 ± 10.42

LTreeLog M5’ AdaBoost(10) AdaBoost(100) MRLPU

Pima-indians 76.64 ± 4.69 76.56 ± 4.71 71.81 ± 4.85 73.89 ± 4.75 76.98 ± 5.23
Australian card 84.64 ± 4.09 85.39 ± 3.87 84.01 ± 4.36 86.43 ± 3.98 87.55 ± 3.89
Ionosphere 88.18 ± 5.06 89.92 ± 4.18 93.05 ± 3.92 94.02 ± 3.83 91.99 ± 5.67
Heart-statlog 83.00 ± 6.83 82.15 ± 6.77 78.59 ± 7.15 80.44 ± 7.08 85.77 ± 8.61
Breast-cancer 70.45 ± 6.78 70.40 ± 6.84 66.75 ± 7.61 66.36 ± 8.18 72.50 ± 4.47
German 74.94 ± 3.41 74.99 ± 3.31 70.91 ± 3.60 74.53 ± 3.26 76.90 ± 5.20
Balance-scale 92.78 ± 3.49 87.76 ± 2.23 78.35 ± 3.78 76.11 ± 4.09 96.30 ± 3.50
Vehicle 79.32 ± 3.72 78.66 ± 4.38 75.59 ± 3.99 77.87 ± 3.58 78.34 ± 5.24
Hypothyroid 99.25 ± 0.40 99.44 ± 0.38 99.65 ± 0.31 99.69 ± 0.31 97.16 ± 0.77
Iris 97.13 ± 4.57 94.93 ± 5.62 94.33 ± 5.22 94.53 ± 5.05 95.99 ± 4.66
Lymphografy 76.90 ± 10.07 80.35 ± 9.32 80.87 ± 8.63 84.72 ± 8.41 84.28 ± 11.57
Glass 64.77 ± 9.90 71.30 ± 9.08 75.15 ± 7.59 78.78 ± 7.80 67.62 ± 10.48
where in this expression we denote by µ̂i and σ̂ :

µ̂i = Ȳi =
1
ni

ni∑
j=1

Yi j i = 1, . . . , k

σ̂ 2
=

k∑
i=1

ni∑
j=1

(
Yi j − Ȳi

)2

k∑
i=1

(ni − 1)

.

Y being the compared variable, ni the sample size from i th
population and D a tabulated value depending on k, on the
sample sizes, and on the confidence level.

These intervals may be used for decision making about
differences in mean between populations as follows: we must
accept that compared populations have a similar mean if zero
belongs to the corresponding interval; if it does not hold the sign
of sample average difference points to the sign of population
mean difference.

In our case, we have k = 11, n1 = · · · = n11 = 100 and
D = 2.45, (Hochberg & Tamhane, 1987) for a 95% confidence
level. In addition, we can use the following expression to
calculate σ̂ since we know the sample deviation σ̂i for each
dataset and procedure

σ̂ 2
=

k∑
i=1

(ni − 1) σ̂ 2
i

k∑
i=1

(ni − 1)

.

Table 5 shows the results of these comparisons. In this table, 0
is placed when MRLPU is similar to the corresponding dataset
and procedure, −1 when MRLPU is inferior, and 1 when
it is superior. With respect to the data, MRLPU sometimes
outperforms all or almost all alternative procedures, as it does in
the German or Balance-scale datasets. However, the algorithm
does not achieve good results in some problems, such as the
Hypothyroid one. Nevertheless, from a procedural point of
view, MRLPU seems to be a competitive scheme.

If we take the whole set of datasets into consideration,
we can affirm that none of the other procedures outperforms
MRLPU. In order to assert this affirmation, we present in
Table 6 the summary of MRLPU comparisons (Table 5) and
similar summaries for AdaBoost (100) and LMT, surely two of
the best algorithms in Machine Learning. For every database
and algorithm we marked the most usual result: wins (W),
draws (D) or losses (L).

Therefore, we can conclude that the results obtained by
MRLPU make it a competitive method when compared to the
learning schemes previously mentioned.

6. Conclusions

To the best of our knowledge, the approach presented in
this paper is the first study in multi-class neural learning
which combines three tools used in machine learning research:
logistic regression, the product-unit neural network model
and the evolutionary neural network paradigm. The method
presents an adequate combination of the three elements to solve
classification problems.



960 C. Hervás-Martı́nez et al. / Neural Networks 21 (2008) 951–961
Table 5
Results comparing MRLPU method with Logistic Model Tree (LMT), Simple Logistic Regression (SLogistic), C4.5, CART, NBTree, LTreeLin, M5’ for
classification, AdaBoost with 10 and 100 iterations

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Pima-indians 0 0 1 1 0 0 0 0 1 1
Australian Card 1 1 1 1 1 1 1 1 1 0
Ionosphere 0 1 1 1 1 1 1 1 0 −1
Heart-statlog 0 0 1 1 1 0 1 1 1 1
Breast-Cancer 0 0 0 1 0 0 0 0 1 1
German 1 1 1 1 1 1 1 1 1 1
Balance 1 1 1 1 1 1 1 1 1 1
Vehicle −1 −1 1 1 1 0 0 0 1 0
Hypothyroid −1 1 −1 −1 −1 −1 −1 −1 −1 −1
Iris 0 0 0 0 1 −1 0 0 0 0
Lymphografy 0 0 1 1 0 1 1 1 0 0
Glass 0 0 0 0 0 0 0 −1 −1 −1

(1) LMT; (2) Slogistic; (3) C4.5; (4) CART; (5) NBTree; (6) LTreeLin; (7) LTreeLog; (8) M5’; (9) AdaBoost(10); (10) AdaBoost(100).
Table 6
Results comparing MRPLU method with Logistic Model Tree (LMT) and
AdaBoost 100 iterations (resume)

MRLPU Adaboost(100) LMT
W D L W D L W D L

Pima-indians 4 6 0 1 3 6 5 5 0
Australian Card 9 1 0 3 7 0 0 9 1
Ionosphere 7 2 1 8 2 0 7 3 0
Heart-statlog 7 3 0 0 7 3 3 7 0
Breast-cancer 3 7 0 0 1 9 7 3 0
German 10 0 0 2 7 1 3 6 1
Balance-scale 10 0 0 0 1 9 6 1 3
Vehicle 4 4 2 4 3 3 10 0 0
Hypothyroid 1 0 9 5 5 0 4 6 0
Iris 1 8 1 0 8 2 1 8 1
Lymphografy 5 5 0 7 3 0 4 6 0
Glass 0 7 3 10 0 0 3 5 2

One of the main contributions of this paper is in suggesting
that adequate product-unit-based functions can learn the data
and build new variables for each problem. Product units
have the ability to capture the nonlinear interactions between
input variables and to reduce the dimension of the new
space built with the transformed variables. One of the main
reasons for evolving product units is that they feature a much
more parsimonious structure than other learnable nonlinear
models, like MLP perceptron networks for example, due to
the expressive power of the activation functions used in the
hidden layer. The evolutionary neural networks algorithm
discovers the basic structure of the model: number of basis
functions and input variables, making up each basis function
and the most complex parameters of the model defined by their
corresponding exponents. Thus, it tailors the network to the
task and overcomes to a great degree any problems arising
from mis-specified network architectures. Subsequently, the
new variables are incorporated into multilogistic regression
with the initial covariates. Therefore, the process of building
the model carried out in two phases is flexible and adapted
to each problem. The classifier obtained is a mixture of linear
and nonlinear models, where the nonlinear model is given by
the product-unit neural network. The right balance between the
two parts of the model for each dataset allows us to express the
underlying structure of the data.

We compare our MRLPU approach to a standard version
of logistic regression that uses initial covariates. The proposed
model outperforms standard logistic regression in five of the
twelve datasets and obtains similar results in the remainder
datasets. Finally, using a multiple comparison test (Dunnett’s
test) in the experimental study, we obtain results which
prove competitive performance of the MRLPU algorithm over
algorithms like Logistic Model Tree (LMT) and AdaBoost
(100), proving also clear outperformance over the rest of the
algorithms tested.

Acknowledgements

This work has been supported in part by the Spanish Inter-
Ministerial Commission of Science and Technology (MICYT)
under the project TIN 2005-08386-C05-02 and with FEDER
funds.

References

Angeline, P. J., Saunders, G. M., & Pollack, J. B. (1994). An evolutionary
algorithm that constructs recurrent neural networks. IEEE Transactions on
Neural Networks, 5(1), 54–65.

Athanaselis, T., et al. (2005). ASR for emotional speech: Clarifying the issues
and enhancing performance. Neural Networks, 18(4), 437–444.

Bishop, M. (1995). Neural networks for pattern recognition. Oxford University
Press.

Blake, C., & Merz, C.J. (1998). UCI repository of machine learning data bases.
www.ics.uci.edu/mlearn/MLRepository.thml.

Bose, S. (1996). Classification using splines. Computational Statistics & Data
Analysis, 22, 505–525.

Bose, S. (2003). Multilayer statistical classifiers. Computational Statistics &
Data Analysis, 42, 685–701.

Breiman, L., et al. (1984). Classification and regression trees. Belmont, CA:
Wadsworth.

Chiang, J.-H. (1998). A hybrid neural network model in handwritten word
recognition. Neural Networks, 11(2), 337–346.

Durbin, R., & Rumelhart, D. (1989). Products units: A computationally
powerful and biologically plausible extension to backpropagation networks.
Neural Computation, 1, 133–142.

Fogel, D. B. (1993). Using evolutionary programming to greater neural
networks that are capable of playing Tic-Tac-Toe. In International
conference on neural networks. San Francisco, CA: IEEE Press.

http://www.ics.uci.edu/mlearn/MLRepository.thml


C. Hervás-Martı́nez et al. / Neural Networks 21 (2008) 951–961 961
Freund, Y., & Shapire, R. (1996). Experiments with a new boosting
algorithm. In Machine learning: Proceedings of the thirteenth international
conference. San Francisco: Morgan Kauffman.

Friedman, J. (1991). Multivariate adaptive regression splines (with discussion).
The Annals of Statistics, 19, 1–141.

Friedman, J., Hastie, T., & Tibshirani, R. (1998). Additive logistic
regression: A statistical view of boosting. Dept. of Statistics, Standford
University.

Friedman, J., & Stuetzle, W. (1981). Proyection pursuit regression. Journal of
the American Statistical Association, 76(376), 817–823.

Gama, J. (2004). Functional trees. Machine Learning, 55(3), 219–250.
Garcı́a-Pedrajas, N., Hervás-Martı́nez, C., & Muñoz-Pérez, J. (2002).

Multiobjetive cooperative coevolution of artificial neural networks. Neural
Networks, 15(10), 1255–1274.

Hastie, T. J., & Tibshirani, R. J. (1990). Generalized additive models. London:
Chapman & Hall.

Hastie, T., Tibshirani, R. J., & Friedman, J. (2001). The elements of statistical
learning. Data mining, inference and prediction. Springer.

Hervás, C., & Martı́nez-Estudillo, F. J. (2007). Logistic regression using
covariates obtained by product-unit neural network models. Pattern
Recognition, 40, 52–64.

Hochberg, Y., & Tamhane, A. C. (1987). Multiple comparison procedures. John
Wiley and Sons.

Ismail, A., & Engelbrecht, A. P. (2000). Global optimization algorithms for
training product units neural networks. In International joint conference on
neural networks.

Janson, D. J., & Frenzel, J. F. (1993). Training product unit neural networks
with genetic algorithms. IEEE Expert, 8(5), 26–33.

Kasobov, N. K. (2006). Evolving connectionist systems ‘the knowledge
engineering approach’. London: Springer-Verlag.

Kirkpatric, S., Gellat, C. D. J., & Vecchi, M. P. (1983). Optimization by
simulated annealing. Science, 220, 671–680.

Kooperberg, C., Bose, S., & Stone, C. J. (1997). Polychotomous regression.
Journal of the American Statistical Association, 92, 117–127.

Landwehr, N., Hall, M., & Eibe, F. (2005). Logistic model trees. Machine
Learning, 59, 161–205.

Lebanon, G., & Lafferty, J. (2002). Boosting and maximun likelihood for
exponential models. In Proc. NIPS.

Leerink, L. R., et al. (1995). Learning with products units. Advances in Neural
Networks Processing Systems, 7, 537–544.

Mahony, S., et al. (2006). Self-organizing neural networks to support the
discovery of DNA-binding motifs. In Advances in self organising maps —
WSOM’05. Neural Networks, 19(6–7), 950–962.
Martı́nez-Estudillo, A. C., et al. (2006a). Hybridation of evolutionary

algorithms and local search by means of a clustering method. IEEE
Transactions on Systems, Man and Cybernetics, Part. B: Cybernetics, 36(3),
534–546.

Martı́nez-Estudillo, A. C., et al. (2006b). Evolutionary product unit based
neural networks for regression. Neural Networks, 19, 477–486.

Massey, L. (2003). On the quality of ART1 text clustering. In Advances in
neural networks research: IJCNN ’03. Neural Networks, 16(5–6), 771–778.

Miller, G. F., Todd, P. M., & Hedge, S. U. (1989). Designing neural networks
using genetic algorithms. In Proc. 3rd int. conf. genetic algorithms and their
applications. San Mateo, CA: Morgan Kaufmann.

Minka, T. (2003). A comparison of numerical optimizers for logistic regression.
Dept. of Statistics, Carnegie Mellon Univ.

Nikolaev, N. Y., & Iba, H. (Eds.) (2006). Backpropagation and Bayesian
methods, adaptive learning of polynomial networks: Genetic programming.
New York: Springer.

Nikolaev, N. Y., & Iba, H. (2003). Learning polynomial feedforward neural
networks by genetic programming and backpropagation. IEEE Transactions
on Neural Networks, 14(1), 337–350.

Quinlan, R. (1993). C4.5: Programs for machine learning. Morgan Kauffman.
Rechenberg, I. (1975). Evolutionstrategie: Optimierung technischer Systeme

nach Prinzipien der Biologischen Evolution. Stuttgart Framman-Holzboog
Verlag.

Saito, K., & Nakano, R. (2002). Extracting regression rules from neural
networks. Neural Networks, 15, 1279–1288.

Schmitt, M. (2001). On the complexity of computing and learning with
multiplicative neural networks. Neural Computation, 14, 241–301.

Schumacher, M., Robner, R., & Vach, W. (1996). Neural networks and logistic
regression: Part I. Computational Statistics & Data Analysis, 21, 661–682.

Song, Q., et al. (2006). Integrating regression formulas and kernel functions into
locally adaptive knowledge-based networks: A case study on renal function
evaluation. Artificial Intelligence in Medicine, 36, 235–244.

Vach, W., Robner, R., & Schumacher, M. (1996). Neural networks and logistic
regression: Part II. Computational Statistics & Data Analysis, 21, 683–701.

Vapnik, V. (Ed.) (1999). The nature of statistical learning theory. Springer.
Wang, Y., & Witten, I. (1997). Inducing model trees for continuous classes. In

Proceedings of poster papers, European conference on machine learning.
Yao, X. (1999). Evolving artificial neural network. Proceedings of the IEEE,

9(87), 1423–1447.
Yao, X., & Liu, Y. (1997). A new evolutionary system for evolving artificial

neural networks. IEEE Transactions on Neural Networks, 8(3), 694–713.


	Multilogistic regression by means of evolutionary product-unit neural networks
	Introduction
	Related works
	Multilogistic regression and product-unit neural networks
	Multilogistic regression linear product-unit neural networks methodology (MRLPU)
	Estimation of the model coefficients
	Evolutionary algorithm

	Experiments
	Linear logistic regression comparison
	Machine learning methods comparison

	Conclusions
	Acknowledgements
	References


