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Abstract

A new approach to predict the growth/no growth interface of Listeria monocytogenes as a function of storage temperature, pH, citric

acid (CA) and ascorbic acid (AA) is presented. A linear logistic regression procedure was performed and a non-linear model was

obtained by adding new variables by means of a Neural Network model based on Product Units (PUNN). The classification efficiency of

the training data set and the generalization data of the new Logistic Regression PUNN model (LRPU) were compared with Linear

Logistic Regression (LLR) and Polynomial Logistic Regression (PLR) models. 92% of the total cases from the LRPU model were

correctly classified, an improvement on the percentage obtained using the PLR model (90%) and significantly higher than the results

obtained with the LLR model, 80%. On the other hand predictions of LRPU were closer to data observed which permits to design

proper formulations in minimally processed foods. This novel methodology can be applied to predictive microbiology for describing

growth/no growth interface of food-borne microorganisms such as L. monocytogenes. The optimal balance is trying to find models with

an acceptable interpretation capacity and with good ability to fit the data on the boundaries of variable range. The results obtained

conclude that these kinds of models might well be very a valuable tool for mathematical modeling.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

In the two last decades, models were developed in the
field of predictive microbiology to evaluate the behavior of
microorganisms under a given set of conditions.

Recently, however, due to the demand for more healthy
and convenient food products, scientists recognize that
there is an increasing need to model microbial growth
limits (McMeekin et al., 2000). Growth/no growth models
or boundary models quantify the probability of microbial
growth and define combinations of factors that prevent
growth. This is because microbial growth is confined to a
limited range of factors, and sometimes growth even drops
sharply when the level of each factor is increased. The
importance of growth boundary models for empowering
the hurdle concept has been discussed by various authors
e front matter r 2006 Elsevier Ltd. All rights reserved.
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(Schaffner and Labuza, 1997; McMeekin et al., 2000).
Therefore, these kinds of models can be useful for the
development of processes that allow safer food products to
be produced and provide information about more realistic
estimations of food safety risks. In addition, they might be
important in decisions regarding food safety regulations
(Schaffner and Labuza, 1997).
Several of these models have been defined over the last

few years: Ratkowsky and Ross (1995) developed a
relationship between growth probability and a polynomial
function derived from a secondary square-root model, ln-
transformed, as the basis of the growth boundary model
using linear logistic regression. This approach was followed
by other authors (Lanciotti et al., 2001) and predicts a
binary response variable, or equivalently the probability of
an event’s occurrence in terms of a specific set of explicative
variables related to it. Later on, a new nonlinear logistic
regression technique has been performed (Salter et al.,
2000; Tienungoon et al., 2000). Logistic models were
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further developed to determine growth/no growth inter-
faces in food-based systems (McKellar et al., 2002).

The logistic regression constitutes a simple and useful
procedure, although it poses problems when is applied to a
real-problem of classification, where frequently we cannot
make the stringent assumption of additive and purely
linear effects of the variables. A traditional technique to
settle this problem is introducing additional variables, basis
functions, which are transformations of the input variables
and then to use linear models in this new space of derived
input features. The advantage of this method is that once
the basis functions have been determined, the models are
linear in these new variables and the fitting follows a
standard procedure. This paper presents a new approach to
determine the growth probability of Listeria monocyto-

genes using logistic regression where the linear functions
are made up of the input variables and transformations by
training Product Unit Neural Network models (PUNN).
The interpretability should not be obtained at the cost of
drastically decreasing, either the good degree of prediction
capacity or robustness. This type of model can be proposed
in predictive microbiology since it is logical to suppose a
priori that a strong interaction exists between the factors
that affect the prediction of microbial growth parameters.
Thus the use of PUNN has two major advantages: these
product units are more effective in detecting interactions
between the factors and they are easier to interpret than
other Artificial Neural Network (ANN) models. The
product units have the ability to implement higher-order
functions and therefore they can also implement poly-
nomial functions as a particular case (Gurney, 1992).
PUNN models are formed by linear combinations of
functions of a potential type that are not as smooth as
sigmoidal type functions. This characteristic enables
PUNN models to tackle complex decision-making more
easily.

Very few reports in the literature in the field of predictive
microbiology have evaluated the performance of different
logistic regression methods to define the microbial growth
probability. Hajmeer and Basheer (2003a) performed a
research work based on the data from Salter et al. (2000)
regarding the growth/no growth of Escherichia coli R31 as
a function of temperature and water activity. They
compared techniques based on ANN and found that the
Probability Neural Networks models classified the data
better than the Feed-forward Error Back-propagation
Artificial Neural Network (FEBANN). In that study, in
relation to logistic models, the quadratic model was more
accurate than the linear one.

In this paper, different logistic regression techniques
were performed and compared to describe the growth
probability of L. monocytogenes as a function of storage
temperature, pH, citric acid (CA) and ascorbic acid (AA):
Lineal Logistic Regression model (LLR), Polynomial
Logistic Regression model (PLR)) and a new approach
of logistic regression models using non-linear terms
obtained by Product Unit Neural Network models
(LRPU). The accuracy of various classifiers was assessed
and compared, in addition to the advantages and limita-
tions of each technique.
2. Material and methods

2.1. Strain and culture conditions

From a slant culture, a pellet containing L. monocyto-

genes (strain NCTC 11994) was cultured during 24 h at
30 1C in 10ml of pure Brain Heart Infusion (BHI) (Oxoid
CM225 ltd., Basingstoke, Hampshire, UK) Afterwards,
1ml of the culture was transferred to 9ml and sub-cultured
twice (24 h, 30 1C each). A third subculture was obtained,
incubating 1ml of the inoculum in a flask of 100ml of BHI
until the early stationary phase was reached.
2.2. Experimental design

A fractional factorial design was followed in order to
find out the growth limits of L. monocytogenes. Data were
collected at CA and AA concentrations of 0, 0.05, 0.1, 0.15,
0.2, 0.25, 0.3, 0.35 and 0.4 % (w/v), at 4, 7, 10, 15 and 30 1C
and pH levels of 4.5, 5, 5.5 and 6. 539 different conditions
were tested with eight replicates per condition. This data
set was divided so that 305 conditions covering the extreme
domain of the model were chosen for training, and 234
conditions were selected inside the range of the model for
testing the generalization capacity (Table 1). To determine
which data belong to model training and model validation,
we selected alternatively the conditions of organic acids
used at the same level of temperature and pH, as shown in
Table 2. The purpose of this selection was to define data
sets for model training that really represent the boundary
zones in order to obtain a better fit.
The quantity of acids to be added was calculated in

percentages (w/v) in order to imitate the addition of
organic acids that takes place in food industries. Previous
examination of the regression analysis revealed that the use
of undissociated acid concentration (u.a.c) as an indepen-
dent factor instead of the total acid concentration resulted
in more accurate models. This is a reasonable observation,
as it has been clearly demonstrated that u.a.c of organic
acids is the effective molecule that causes inhibition of
growth (ICMSF, 1980). Therefore, CA and AA factors
were included in the analysis in terms of u.a.c which was
calculated using the Henderson–Hasselbach equation:
For citric acid,

u:a:c ¼
CaðHþÞ3

ðHþÞ3 þ K1ðH
þÞ

2
þ K1K2ðH

þÞ
1
þ K1K2K3

. (1)

For ascorbic acid,

u:a:c ¼
CaðHþÞ2

ðHþÞ2 þ K1ðH
þÞ

1
þ K1K2

, (2)
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Table 1

Conditions selected for model training and model validation for the

environmental factors considered

T (1C) pH CA (% w/v) AA (% w/v)

30 6 0 0.4

0.4 0

0 0

0.4 0.4

5.5 0 0

0 0.4

0.35 0–0.4

0.4 0–0.4

5 0 0

0 0.4

0.3 0–0.4

0.35 0–0.4

0.4 0–0.4

4.5 0 0

0 0.4

0.15 0–0.4

0.2 0–0.4

0.25 0–0.4

0.3 0–0.4

0.35 0–0.4

0.4 0–0.4

15 6 0 0.4

0.4 0

0 0

0.4 0.4

5.5 0 0

0 0.4

0.25 0–0.4

0.3 0–0.4

0.35 0–0.4

0.4 0–0.4

5 0 0

0.4 0

0.25 0–0.4

0.3 0–0.4

0.35 0–0.4

0.4 0

0.4 0.4

4.5 0 0–0.4

0.05 0–0.4

0.4 0.4

0.4 0

10 6 0 0.4

0.4 0

0 0

0.4 0.4

5.5 0 0

0 0.4

0.25 0–0.4

0.3 0–0.4

0.35 0–0.4

0.4 0–0.4

5 0 0

0 0.4

0.1 0–0.4

0.15 0–0.4

0.2 0–0.4

0.25 0–0.4

0.3 0–0.4

0.4 0

0.4 0.4

Table 1 (continued )

T (1C) pH CA (% w/v) AA (% w/v)

4.5 0 0.4

0.4 0

0 0

0.4 0.4

7 6 0 0

0 0.4

0.3 0–0.4

0.4 0–0.4

5.5 0 0

0 0.4

0.2 0–0.4

0.25 0–0.4

0.3 0–0.4

0.35 0–0.4

0.4 0–0.4

5 0 0

0 0.4

0.05 0–0.4

0.1 0–0.4

0.15 0–0.4

0.2 0–0.4

0.25 0–0.4

0.3 0–0.4

4.5 0 0.4

0.4 0

0 0

0.4 0.4

4 6 0 0

0 0.4

0.3 0–0.4

0.4 0–0.4

5.5 0 0

0 0.4

0.15 0–0.4

0.2 0–0.4

0.25 0–0.4

0.3 0–0.4

0.4 0

0.4 0.4

5 0 0–0.4

0.05 0–0.4

0.1 0–0.4

0.15 0–0.4

0.2 0–0.3

0.25 0–0.3

0.4 0

0.4 0.4

4.5 0 0.4

0.4 0

0 0

A. Valero et al. / Food Microbiology 24 (2007) 452–464454
where Ca is the total concentration of the acid, expressed in
mM, H+ the proton concentration (mM) at a certain pH,
and Kx are the dissociation constants of the organic acids,
which were recalculated to mM to incorporate in Eqs. (1)
and (2) (K1 ¼ 0.00072; K2 ¼ 1.7� 10�5; K3 ¼ 4.1� 10�7 for
citric acid, and K1 ¼ 0.0001; K2 ¼ 1.6� 10�12 for ascorbic
acid). Organic acids employed are expressed in percentage
(w/v), total concentration (t, mmol/l), undissociated acid
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Table 2

Experimental design followed at a same level of temperature and pH

CA ¼ Citric acid; AA ¼ ascorbic acid.
J, training data; ~, validation data.

A. Valero et al. / Food Microbiology 24 (2007) 452–464 455
concentration (u.a.c, mM) and undissociated acid fraction
(u.a.f) in Table 3.
2.3. Growth medium preparation

Different concentrations of citric acid L (�) L-hydrate
(Panreac 131018, Barcelona Spain) and L (+) ascorbic acid
(Panreac 131013, Barcelona Spain) were added to 100ml of
BHI broth to achieve the desired combinations of both
acids. The pH of the media was adjusted with solutions of
1M of HCl and NaOH (Panreac, Barcelona, Spain)
brought to its final volume, and the final pH was checked
(pH/mv-meter digit 501, Crison, Barcelona, Spain). All the
modified media were sterilised through 0.22 mm sterile
filters (Millipore, Madrid, Spain) and were kept in
refrigeration until inoculation.
2.4. Inoculation procedure

The procedure described by Carrasco et al. (2006) was
followed. A calibration equation was performed in order to
determine the number of cells inoculated into the media by
gathering three data sets from three previous calibrations
in which viable counts were plotted against OD data
obtained in Bioscreen C (Labsystems, Finland). At the
same time the inoculum size was checked by plate count on
Tryptone Soya Agar (TSA) (Oxoid ltd., Basingstoke,
Hampshire, UK) and incubated at 30 1C for 24 h.

From the inoculum grown in BHI, the necessary
dilutions in buffered 0.1% peptone water (Oxoid Ltd.,
Basingstoke, Hampshire, UK) were carried out, to obtain a
concentration of 5� 105CFU/ml. Then, eight replicate
microtiter wells were filled up with 160 ml of the modified
media, and inoculated with 40 ml, reaching a final
concentration of 105CFU/ml per well. Two wells per
condition studied served as controls (un-inoculated med-
ium). Afterwards, microtiter plates were sealed with
paraffin and refrigerated at the appropriate temperatures.
2.5. Growth/no growth evaluation

Growth was monitored by absorbance measurements in
Bioscreen C (Labsystems, Finland) during 21 days at all
conditions. Preliminary studies performed on Bioscreen C,
showed that a significant change of turbidity was detected
(and consequently growth) by an increase of the absor-
bance of 0.2 units. By means of the calibration equation,
optical density data were transformed into plate counts.
The absorbance of the un-inoculated medium, around 0.15
units, was subtracted to the absorbance values of the
inoculated media before applying calibration curves. In this
study, growth was considered by direct turbidimetric
measurements when the cell density reached 7.5 logCFU/
ml, corresponding to an absorbance value of 0.350
approximately. However, to solve the problem of the
detection limit of Bioscreen C, for the closest samples
near the boundary zone (which gave absorbance values less
than 0.350), the bacterial population in the well was
determined by direct plating on TSA and comparing
with the initial inoculum size. Growth was considered
if a difference of more than 1 logCFU/ml with the
initial inoculum was detected. Growth/no growth evalua-
tion by turbidimetric measurements was followed in
other studies (Lanciotti et al., 2001; Koutsoumanis et al.,
2004) concluding good results for predicting microbial
interface.
For any combination of factors, probability of growth

(P) was recorded as ‘‘1’’ if it occurred and ‘‘0’’ if did not.
The predicted growth/no growth interfaces given by the
PLR and the LRPU models for P ¼ 0.9, 0.5 and 0.1 were
calculated using Microsoft Excel Solver.
To start processing data, each of the input and output

variables were scaled in the ranks [0.1, 0.9] and [1, 2],
respectively. The lower bound is chosen to avoid inputs
values near to 0 that can produce very large values of the
function for negative exponents. The upper bound is
chosen near 1 to avoid dramatic changes in the outputs of
the network when there are weights with large values
(especially in the exponents). The new scaled variables were
named T*, pH*, CA* and AA*, to the input variables and
G* ¼ G+1 for the output variable, that is G*A{1, 2}. For
example, T is calculated as follows:

T� ¼
T � Tmin

Tmax � Tmin
� 0:8þ 0:1, (3)

where T is the original temperature, Tmin and Tmax, are the
minimum and maximum values, and T* is the scaled
temperature. The model can be applied by de-scaling the
variables in the same form.

2.6. Logistic regression models

We consider the situation where we observe a binary
outcome variable y and a vector x ¼ (1, x1, x2, y, xk)
of covariates for each N individuals (we assume that
the vector of inputs includes the constant term 1 to
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Table 3

Organic acids employed are expressed in percentage (w/v), total concentration (t, mmol/l), undissociated acid concentration (u.a.c., mmol/l) and

undissociated acid fraction (u.a.f.)

CA (%) AA (%) pH CA (t) AA (t) CA (u.a.c.) AA (u.a.c.) CA (u.a.f.) AA (u.a.f.)

0 0 4.5 0 0 0 0 0 0

0.05 0.05 2.604 2.840 0.072 0.682 0.027 0.240

0.1 0.1 5.208 5.681 0.144 1.365 0.027 0.240

0.15 0.15 7.812 8.522 0.216 2.047 0.027 0.240

0.2 0.2 10.416 11.363 0.288 2.730 0.027 0.240

0.25 0.25 13.020 14.204 0.360 3.412 0.027 0.240

0.3 0.3 15.625 17.045 0.432 4.095 0.027 0.240

0.35 0.35 18.229 19.886 0.504 4.777 0.027 0.240

0.4 0.4 20.833 22.727 0.576 5.460 0.027 0.240

0 0 5 0 0 0 0 0 0

0.05 0.05 2.604 2.840 0.012 0.258 0.004 0.090

0.1 0.1 5.208 5.681 0.025 0.516 0.004 0.090

0.15 0.15 7.812 8.522 0.038 0.774 0.004 0.090

0.2 0.2 10.416 11.363 0.051 1.033 0.004 0.090

0.25 0.25 13.020 14.204 0.064 1.291 0.004 0.090

0.3 0.3 15.625 17.045 0.077 1.549 0.004 0.090

0.35 0.35 18.229 19.886 0.090 1.807 0.004 0.090

0.4 0.4 20.833 22.727 0.103 2.066 0.004 0.090

0 0 5.5 0 0 0 0 0 0

0.05 0.05 2.604 2.840 0.001 0.087 0.0006 0.030

0.1 0.1 5.208 5.681 0.003 0.174 0.0006 0.030

0.15 0.15 7.812 8.522 0.004 0.261 0.0006 0.030

0.2 0.2 10.416 11.363 0.006 0.348 0.0006 0.030

0.25 0.25 13.020 14.204 0.008 0.435 0.0006 0.030

0.3 0.3 15.625 17.045 0.009 0.522 0.0006 0.030

0.35 0.35 18.229 19.886 0.011 0.609 0.0006 0.030

0.4 0.4 20.833 22.727 0.012 0.696 0.0006 0.030

0 0 6 0 0 0 0 0 0

0.05 0.05 2.604 2.840 0.0001 0.028 5.561E-05 0.009

0.1 0.1 5.208 5.681 0.0002 0.056 5.561E-05 0.009

0.15 0.15 7.812 8.522 0.0004 0.084 5.561E-05 0.009

0.2 0.2 10.416 11.363 0.0005 0.112 5.561E-05 0.009

0.25 0.25 13.020 14.204 0.0007 0.140 5.561E-05 0.009

0.3 0.3 15.625 17.045 0.0008 0.168 5.561E-05 0.009

0.35 0.35 18.229 19.886 0.0010 0.196 5.561E-05 0.009

0.4 0.4 20.833 22.727 0.0011 0.225 5.561E-05 0.009
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accommodate the intercept). We coded the two-class via a
0/1 response yi, where yi ¼ 1 for the first class (growth) and
yi ¼ 0 for the second class (no growth). Let p be the
conditional probability associated with the first class.
Logistic regression is a widely used statistical modeling
technique in which the probability p of the dichotomous
outcome event is related to a set of explanatory variables x

in the form:

logitðpÞ ¼ ln
p

1� p

� �
¼ f ðx; bÞ ¼ bTx

¼ b0 þ b1x1 þ � � � þ bkxk ð4Þ

where b ¼ ðb0;b1;b2; . . . ;bkÞ is the vector of the coefficients
of the model and bT the transpose vector. We refer to p=1�
p as odds-ratio as the log-odds or logit transformation. A
simple calculation in Eq. (4) shows that the probability of
occurrence of an event as a function of the initial variables
is non-linear and is given by

pðx; bÞ ¼
ebTx

1þ ebTx
. (5)

The decision boundary is the set of points for which the
log-odd are zero, that is, in this lineal model, a hyperplane
defined by fxjbTx ¼ 0g. Observe that logistic regression not
only constructs a decision rule but also finds a function
that for any input vector defines the probability p that the
vector x belongs to the first class.
However, as described above, it is useful to amplify/

replace the vector of inputs X with additional variables,
which are transformations of X, and then use lineal models
in this new space of derived input features.
A first approximation to these kinds of models is to

define a Polynomial Logistic Regression model, PLR,
where the cross-product terms and the quadratic effects are
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included in the analysis; so Eq. (4) is modified as

logit ðpÞ ¼ b0 þ b1X 1 þ b2X 2 þ � � � þ bkX k þ b12X 1X 2

þ � � � þ bk�1;kX k�1X k þ b1;1X
2
1 þ � � � þ bk;kX 2

K .

ð6Þ

The use of functions f(x,b) of a quadratic response
surface is not justified in all cases, since the polynomial
order cannot be determined a priori and different tests
would have to be performed with different polynomial
orders. If the main reason to build polynomial functions is
to attempt to predict growth probability as a function of
environmental factors and their possible interactions, in a
search for more flexible models, a neural network model
based on functions of potential base might be an
alternative option to consider.

In this paper, we applied a new logistic regression model
based on the combination of the standard linear model and
product-unit models, introducing a non-linear term in the
model constructed with basis functions given by products
of the inputs raised to real powers, which express the
possible strong interactions among the factors. The
methodology was based on a previous study of Hervás-
Martı́nez and Martı́nez-Estudillo (2006). The general
expression of the f(x, h) is given by

f ðx; hÞ ¼ a0 þ
Xk

j¼1

aixi þ
Xm

j¼1

bj
Yk

i¼1

x
wji

i . (7)

With the corresponding matricial expression

f ðx; hÞ ¼ aTxþ bTBðx;WÞ, (8)

where the basis functions are B(x, W) ¼ (B1(x,w1),
B2(x,w2),y, Bm(x,wm)) with Bj(x,wj) ¼

Qk
i¼1x

wji

i and the
parameters h ¼ ða; b;WÞ, a (a0, a1,y, ak), b ¼ (b0,b1,y,
bm) and W ¼ (w1,y,wj) where wj ¼ (wj1,y,wjp) with
wjiAR.

In this way the new set of conditional distributions are:

pðx; bÞ ¼
ef ðx;yÞ

1þ ef ðx;yÞ (9)

and the logit transformation

logitðpÞ ¼ ln
p

1� p

� �
¼ f ðx; yÞ. (10)

In this case the decision boundaries are non-linear and
defined by the hypersurface f(x,h) ¼ 0 in the Rk space. The
non-linear part f(x,h) corresponds to a special class of feed-
forward neural networks, namely PUNN, introduced by
Durbin and Rumelhart (1989) and recently developed by
Martı́nez-Estudillo et al. (2006) and based on multi-
plicative nodes instead of the additive ones.

In our framework, the product units have the following
structure: an input layer with a node for every input
variable, a hidden layer with several nodes and an output
layer with just one node (to classify the different results
into two classes: growth and no growth). There are no
connections between the nodes in a layer and none between
the input and output layers either. The network has k

inputs that represent the independent variables of the
model, m nodes in the hidden layer and one node in the
output layer. The activation of the jth node in the hidden
layer is given by Bjðx;wjÞ ¼

Qk
i¼1x

wij

i where wij is the
connection between input node i and hidden node j. The
activation of the output node is given by b0 þPm

j¼1bjBðx;wjÞ where bj is the connection between the
hidden node j and the output node. The transfer function
of all nodes is the identity function.

2.7. Estimation of the coefficients

The methodology proposed was based on the combina-
tion of an evolutionary algorithm, EA, (global explorer)
and a local optimization procedure (local exploiters)
carried out by standard maximum likelihood optimization
method. In a first step, an EA was applied to design the
structure and training the weights of a product-unit neural
network. The evolutionary process determines the number
m of potential basis functions of the model and the
corresponding vector wj of exponents. Once the basis
functions B(x, W) ¼ (B1(x,w1), B2(x,w2),y, Bm(x,wm))
have been determined by the EA, we considered a
transformation of the input space adding the non-linear
transformations of the input variables given by the basis
functions obtained by the evolutionary algorithm. The
remaining coefficients were calculated by the maximum
likelihood optimization method. Finally, we used a back-
ward stepwise procedure, pruning variables sequentially to
the model obtained previously, until further prunes did not
improve the fit.
In the following paragraphs we describe the metho-

dology recently developed by Hervás-Martı́nez et al.
(2006).

2.8. Hybrid estimation methodology

We applied initially an evolutionary algorithm, EA, to
find the basis functions Bðx;WÞ ¼ fB1ðx;w1Þ;B2ðx;w2Þ; . . . ;
Bmðx;wmÞg corresponding to the non-linear part of f(x,h).
In this step, we used an EA to train the PUNN. The
training procedure consists of estimating the weight
connections, wji, of the input layer with a hidden layer of
a PUNN, and the number, m, of the basis functions to the
net. The search begins with an initial population where for
each iteration the population is updated using a popula-
tion-update algorithm. The population is subject to the
operations of replication and mutation.
The general structure of the EA is described in detail in

Martı́nez-Estudillo et al. (2006), and it can be supported in
the following steps:
(a)
 Generate initial population (NR) with randomly
generated networks.
(b)
 Evaluate the fitness score for each individual of the
population based on the objective function.
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(c)
 Copy the best individual to the next generation.

(d)
 The best 10% of the population substitutes the worst

10% of individuals.

(e)
 Apply parametric mutation operators to the best 10%

of the population.

(f)
 Apply structural parametric mutation to the rest of the

population (90%).
Parametric mutation consists of a simulated annealing
algorithm (Kirkpatric et al., 1983).

For determining the goodness of a model g we
considered the mean squared error (MSE) of that
individual g of the population:

MSEðgÞ ¼
1

nT

XnT

l¼1

ðyl � gðxlÞÞ
2, (11)

where y1 are the predicted values. We defined the fitness
function A(g) by means of a strictly decreasing transforma-
tion of the mean squared error in Eq. (11):

AðgÞ ¼
1

1þMSEðgÞ
. (12)

The severity of a mutation to an individual g is dictated
by the temperature T(g), given by T(g) ¼ 1–A(g),
0pT(g)o1.

Structural mutation implies a modification of the
structure of the function and allows the explorations of
the different regions of the search space and helps to keep
the diversity of the population. There are four different
structural mutations: node addition (AN), node deletion
(DN), connection addition (AC) and connection deletion
(DC). All the above mutations are made sequentially in the
given order, with probability T(g) in the same generation
on the same network. If the probability does not select any
mutation, one of the mutations is chosen at random and
applied to the network. The stop criterion is reached when
there is no improvement either in the average of the
performance of a percentage of the best individuals in the
population, or in the fitness of the best individual, or when
the algorithm achieves a determined number of genera-
tions. In the next step the input space was transformed by
adding the non-linear transformations of the input vari-
ables given by the basis functions obtained by the EA.

H : Rk ! Rkþm

ðx1; x2; . . . ; xkÞ ! ðx1;x2; . . . ; xk; z1 . . . ; zmÞ,

where z1 ¼ B1ðx; ŵ1Þ . . . . . . zm ¼ Bmðx; ŵmÞ.
Following the proposed methodology, a (standard)

maximum likelihood estimation method was applied in
the new space of derived input features. The log-likelihood
function for nT observations was optimized as follows:

lðh1Þ ¼
XnT

i¼1

yif ðx;h
1
Þ � logð1þ ef ðx;h1ÞÞ

n o
, (13)

where h1 ¼ ða;b; ŵÞ. The estimated coefficients ĥ ¼ ðâ; b̂; ŵÞ
are obtained by means of the Newton–Raphson optimi-
zation algorithm. The estimation process determines
the model:

f ðx; ĥÞ ¼ â0 þ
Xk

i¼1

âixi þ
Xm

j¼1

b̂j

Yk

i¼1

x
ŵji

i . (14)

Finally, in order to select the final model, a backward
stepwise procedure was used, starting with the full model
and successively pruning variables sequentially to the
model until further prunes do not improve the fit. At each
step, the least significant parameters to predict the response
variable were deleted, that is, the one which showed the
greatest critical value (p-value) in the hypothesis test, where
the associated coefficient equal to zero is the hypothesis to
be contrasted. The procedure finished when all tests
provided p-values smaller than the fixed significance level
and the model selected in the previous step fitted well.

2.9. Statistical analysis

Both Lineal and Polynomial Logistic Regression models
were fitted to the growth/no growth data obtained by
means of a regression modeling procedure of SPSS for
Windows 11.0 (SPSS, 2003 Inc., Chicago, IL, USA). The
regression was performed with a forward conditional
method, which selects the most significant factors. To
measure the classifier’s performance, the output was
compared to the observed outcome (event or non-event),
and assigned one of the four possible situations: (i) true
negative (TN) when negative cases are correctly identified
by the classifier; (ii) false positive (FP) when the classifier
incorrectly identifies a non-event case as an event; (iii) false
negative (FN) when the classifier incorrectly identifies an
event case as a non-event; and (iv) true positive (TP) when
the positives cases are correctly identified. For a given
number of cases (N) these index are inserted into a
contingency matrix (C-matrix) as

C �matrix ¼
NTN NFP

NFN NTP

 !
,

where N ¼ NTN+NFP+NFN+NTP. The sum of NTN+NTP is
the total number of cases that were classified correctly,
whereas NFN+NFP is the total number of misclassified
cases.
The performance measures used were those described by

Hajmeer and Basheer (2003a): (i) fraction correct, FC,
representing the proportion of cases classified correctly; (ii)
false alarm (positive) rate, FAR, which represents the
fraction of negative cases classified as positives; and (iii)
probability of detection, POD, representing the fraction of
true cases detected as positives by the classifier. These
concepts are expressed as follows:

FC ¼
NTN þNTP

N
; FAR ¼

NFP

NTN þNFP
,

POD ¼
NTP

NFN þNTP
. ð15Þ

For a perfect classifier, FC ¼ POD ¼ 1 and FAR ¼ 0.
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3. Results and discussion

3.1. Evaluation of the goodness of fit

Among the different conditions tested, there were 240 no
growth cases and 299 growth cases. A forward conditional
method was selected in SPSS in order to obtain the
significant variables of the logistic regression model by a
stepwise selection. The coefficient estimates, the standard
errors and the p-values (po0.05) for each model are shown
in Table 4, where we scaled the input variables in the
[0.1,0.9] range in order to compare LLR, PLR and LRPU
models. The optimal structure for the LRPU was given by
4:5:1 with 4 nodes in the input layer (T, CA, AA and pH), 5
nodes in the hidden layer (represented in Table 4) and 1
output layer (growth/no growth).

The classifiers performance of the three models tested are
presented in Table 5. Of the three models tested, the LLR
model correctly predicted only 80% of the cases (FC),
combining all data sets, whereas the PLR model achieved a
more refined fit to the data (90% of the cases were correctly
classified), but the best fit was obtained using the LRPU
model. Using the combined training and validation data,
the accuracy of the last model was good at FC ¼ 92%,
FAR ¼ 9.58% and POD ¼ 93.31%, indicating good relia-
bility in the identification of critical cases (i.e., growth
limiting). Out of the 539 growth/no growth cases, the
number of cases misclassified by the models (NFP+NFN)
were 108 for the LLR model, 54 for the PLR model and 43
for the LRPU model. These results are in line with those
obtained by Hajmeer and Basheer (2003a), who found that
the logistic regression-based classifiers were less accurate
than the PNN or the FEBANN-based classifiers. They
carried out hybrid approaches that integrate ANNs and
Table 4

Statistical parameters obtained for the Linear Logistic Regression model (LLR

Network Logistic Regression model (LRPU) for the growth limits of L. mono

Factors LLR

Coefficient. Std. error p-va

Intercept — — —

T* 7.065 1.174 0.00

pH* 2.591 0.432 0.00

AA* �10.303 1.492 0.00

CA* �4.920 1.552 0.00

(pH)*(AA)* — — NS

(pH)*(CA)* — — NS

Parameters LRPU

1 Intercept

1 (T*)0.417

2 (pH*)1.653 (AA*)�0.915

3 (pH*)1.777 (AA*)�0.767 (CA*)0.262

3 (pH*)�0.111 (AA*)0.270 (CA*)0.089

4 (T*)0.139 (pH*)0.654 (AA*)�3.532 (CA*)�1.897

CA* ¼ Scaled citric acid; AA* ¼ scaled ascorbic acid; T* ¼ scaled temperatu
statistical Bayesian conditional probability estimation, or
the use of PNNs in comparison with linear and non-linear
logistic regression models (Hajmeer and Basheer, 2003b).
They observed that these new approaches outperformed
the linear and non-linear logistic regression models both in
terms of classification accuracy and ease. For instance,
with the hybrid ANN-Bayesian approach, they obtained a
FC value of 93.9%. The non-linear logistic model
(FC ¼ 90.5%) was also an improvement on the linear
model (FC ¼ 77.1%). On the other hand, there are
different approaches in scientific literature to describe
growth/no growth interface of microorganisms. Le Marc
et al. (2002) developed a multiplicative cardinal model to
study the effect of temperature, pH, and organic acid
concentration on Listeria growth. This model was based on
assuming independent effects between input variables and
limited the boundary zone at conditions which growth rate
decreased to 0. Although these models provide an accurate
description of bacterial growth, when increasing the
number of environmental factors and interactions among
them, the use of LRPU models are an alternative option to
consider, because the number of interactions increases
exponentially and, therefore; it will be harder to model all
these interactions, especially in the extreme regions of the
domain of the input variables.
Furthermore, the LRPU model generated less false

negative cases (NFN) (i.e., no growth cases predicted
while growth cases were observed) than the other models
(Table 4), in the training, validation data, and also the
combined data, which implies that it would be consi-
dered fail-safe compared to the LLR and PLR models.
This fact is especially important in establishing new
formulations for a food product which guarantee that no
growth will occur.
), Polynomial Logistic Regression model (PLR) and Product Unit Neural

cytogenes

PLR

lue Coefficient. Std. Error p-value

3.266 1.475 0.027

0 12.547 1.927 0.000

0 21.340 2.962 0.000

0 �11.504 3.405 0.001

2 — — NS

�33.974 10.694 0.001

�179.455 30.642 0.000

Coefficient. Std. error p-value

10.487 2.428 0.000

32.462 5.289 0.000

115.945 19.001 0.000

�281.699 46.242 0.000

�38.326 6.467 0.000

�3� 10�4 5.22� 10�5 0.000

re, pH* ¼ scaled pH, NS ¼ not significant.



ARTICLE IN PRESS

Table 5

Classification table obtained for the growth limits of L. monocytogenes

Classifications models Training

NTN NFP NFN NTP FC (%) FAR (%) POD (%)

LR 99 35 22 149 81.3 26.11 87.13

PLR 118 16 10 161 91.47 11.94 94.15

LRPU 122 12 9 162 93.11 8.95 94.73

Validation

LR 76 30 21 107 78.2 28.3 83.59

PLR 90 16 12 116 88.03 15.09 90.62

LRPU 95 11 11 117 90.59 10.37 91.40

Combined

LR 175 65 43 256 79.96 27.08 85.61

PLR 208 32 22 277 89.98 13.33 92.64

LRPU 217 23 20 279 92.02 9.58 93.31

LLR ¼ Linear Logistic Regression model; PLR ¼ Polynomial Logistic Regression model; LRPU ¼ Product Unit Neural Network Logistic Regression

model; NTN ¼ true negative CASES; NFP ¼ false positive cases; NFN ¼ false negative cases; NTP ¼ true positive cases; FC% ¼ fraction of correct

classified cases; FAR% ¼ false alarm rate; POD% ¼ probability of detection.
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3.2. Interpretability of the LRPU model

Since the LRPU model proposed presented the best fit to
the data observed, it seems logical to evaluate whether or
not that model can predict the behaviour of L. mono-

cytogenes reliably in growth limiting areas. To facilitate the
comprehension and the interpretability of the LRPU
model, we propose a specific case as an example:
T ¼ 4 1C; CA ¼ AA ¼ 0.3% (w/v) and pH ¼ 5.5. The
scaled values in the rank [0.1–0.9] of the parameters in
this example will be: T* ¼ 0.1; CA* ¼ 0.113; AA* ¼ 0.176;
pH* ¼ 0.633. To obtain the estimated logit P term, we
multiplied each term of the equation by the scaled value of
the entered parameters. The logit P term will be equal to
�3.606 and the probability of growth (P) can be obtained
from Eq. (9) (P ¼ 0.026). It should be taken into account
that concentration of organic acids is introduced as u.a.c
(mM) in the model instead of % w/v. In the same way,
PLR and LLR can be applied.

At higher temperatures, probability of growth increased
and growth was significantly reduced at low temperatures
(4 and 7 1C). The model considered the collateral effect of
the temperature compared with the rest of the factors so
the interactions between the pH, CA and AA were
considerably important. This fact can be observed because
the first term of the equation is not crossed with other
factors and temperature only appears in the last term to
consider the joint effect of all the variables in specific
boundary areas.

However, the temperature effect was increased by
reducing the pH or increasing the concentration of the
organic acids used. Predictions obtained with the PLR and
LRPU models fixing P at 0.9; 0.5 and 0.1 are represented in
Fig. 1 (CA ¼ AA ¼ 0.2%). Concentration of both organic
acids is expressed in % (w/v) in Fig. 1–4 to facilitate an
easier interpretability, although model parameters were
calculated in u.a.c (mM), as stated in Section 2. The growth
probability of the LRPU model was sharply defined by
small changes in the levels of the factors. Geeraerd et al.
(1998) stated that the pH range over L. monocytogenes can
grow is narrower at low temperatures; thus, growth can be
reduced by applying specific combinations of temperature
and pH, which separately would not enable bacterial
inhibition. Predictions of LRPU model shown that the
combination of low temperatures and pH were particularly
significant. For instance, at 7 1C and pH 5 (CA ¼ AA ¼
0%) growth probability was 0.99, but by reducing the pH
to 4.5, growth was almost inhibited (P ¼ 0.05). At lower
pH, temperature was an important factor, since, at 7 1C,
probability of growth was 0.05, whereas at temperatures
higher than 15 1C, predicted probability of growth was
above 0.88 (pH 4.5, CA ¼ 0%; AA ¼ 0%). At 4 1C
(CA ¼ AA ¼ 0%), predictions of the LRPU model
showed no growth (Po0.5) for pHs below 4.81. These
results are in concordance with other published works.
George et al. (1988) studied the growth limits of L.

monocytogenes as a function of temperature and pH and
reported that minimum pH at which growth was observed
at 20 and 30 1C was 4.20 and 4.43, respectively, while at
4 1C, no growth was recorded at pHs below 5.03.
Tienungoon et al. (2000) evaluated the growth boundaries
of L. monocytogenes influenced by temperature, aw, pH and
lactic acid concentration. They found that for aw ¼ 0.993,
0% lactic acid and a temperature range of 15–30 1C,
growth was observed at pH 4.5, but at temperatures below
10 1C, growth occurred at pHs above 5. Le Marc et al.
(2002) included a novel term to study the combined effects
of temperature, pH and organic acids on the growth limits
of L. innocua. At 15 1C, growth was recorded at pH 4.5, but
at 5 1C was not observed at pH values below 5.05. The
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Fig. 1. Growth/no growth interfaces for the predicted growth limits of L.

monocytogenes by the Polynomial Logistic Regression model (PLR) and

the Product Unit Neural Network Logistic Regression model (LRPU)

fixing the probabilities at 0.1, 0.5 and 0.9. CA ¼ AA ¼ 0.2%. (a) PLR

model; (b) LRPU model.
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Fig. 2. Growth/no growth interfaces for the predicted growth limits of L.

monocytogenes by the Polynomial Logistic Regression model (PLR) and

the Product Unit Neural Network Logistic Regression model (LRPU)

fixing the probabilities at 0.1, 0.5 and 0.9. CA ¼ 0.2% pH 5. (a) PLR

model; (b) LRPU model.
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same results were also observed by Parish and Higgins
(1989) and Petran and Zottola (1989). Koutsoumanis et al.
(2004) have studied the growth limits of L. monocytogenes

influenced by temperature, pH and aw in agar. No growth
was observed at 4 1C- pH 4.96; and 10 1C-pH 4.45. Similar
results were observed by Cheng-An Hwang and Tamplin
(2005) in mayonnaise, where Listeria did not grow at pH
4.5 and 5 at refrigeration temperatures (4–8 1C).

As the u.a.c. of the organic acids is highly dependent on
the pH level, these interactions are expressed in the second,
third and fourth term of the equation with different effects.
As the acid concentration increased, there was an increase
in the minimal pH that supported growth, showing an
interactive effect (Le Marc et al., 2002). The second term
expresses the interaction of the pH level with AA; where
the pH has a greater influence on the value of this
coefficient. At pH levels of over 5.4, the probability of
growth was higher than 0.9 for any concentration of AA.
Fig. 2 shows the relationship between these two factors
(10 1C and CA ¼ 0.2%); growth probability is higher when
the concentration of AA is decreased and the pH increased.

The third and the fourth term of the equation express the
interactions between CA, pH and AA. In general, the same
pH effect was observed with CA and AA: the probability
of growth was inversely correlated. The growth interfaces
between pH and CA are shown in Fig. 3 (10 1C and
AA ¼ 0.2%); however, in comparison with AA, CA
presented a greater inhibitory effect based on the u.a.c.
For instance, in Fig. 4 no growth was observed at CA
concentrations of 0.3% at pH 5 (10 1C and AA ¼ 0%),
whereas growth was produced at AA concentrations of
0.3% at pH 5 (10 1C and CA ¼ 0%). These effects were
incremented by reducing the pH, especially below 5.
Results from Giannuzzi and Zaritzky (1996) are in
agreement with the major effectiveness of citric acid when
the analysis is based on u.a.c. This effectiveness is due to
the physical and chemical characteristics of media as well
as the chemical nature of these acids. Because of the pK
values of CA (pK1 ¼ 3.14; pK2 ¼ 4.77; pK3 ¼ 6.39), it
presents a strong dissociation inside microbial cells (all pK
under physiological pH of cytoplasm, pH ¼ 7.4). Results
from Ahamad and Marth (1989) and Young and Foeged-
ing (1993) agree with the inhibitory effect of citric acid and
suggest that a higher concentration of net-protons is
reached inside microbial cells when CA is added, in spite
of passing through the cell membrane at a lower quantity.
However, if the analysis is based on the undissociated
fraction (u.a.f.), AA presented more inhibitory effect than
CA. This fact, is due to the pK values of AA are far from
each other (pK1 ¼ 4.00 and pK2 ¼ 11.79), so it dissociates
in little proportion, comparing with CA at the same total
concentration of both acids. AA is, from this point of view,
the most effective acid due to its high pKa value (Giannuzzi
and Zaritzky, 1996).
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the Product Unit Neural Network Logistic Regression model (LRPU)
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The combined effect of all variables is represented by the
last term of the equation, but no clear trends were
observed, maybe because this term refers to the fit of the
model to a specific boundary zone.

In summary, the pH had the greatest effect, particularly
when interacting with the organic acids since small
transitions produced significant changes in probability.
Additionally, there was a remarkable effect on growth
probability at low temperatures.

For evaluating the robustness of the LRPU model, it was
submitted to a variation of the identified parameters.
Predictions obtained by the model were close to data
observed at stringent conditions for growth (which are
more interesting to food producers). Fig. 5 represents the
estimated probability as a function of temperature at
different organic acids percentages at pH ¼ 5.5. It can be
seen that relatively lower concentrations of organic acids
(0.25% w/v) does not produce growth inhibition even at
4 1C, so for designing a formulation of a minimally
processed product, higher concentrations are needed. At
concentrations above 0.3% w/v growth was inhibited at
refrigeration temperatures (Fig. 5) and at 0.4% w/v
Listeria can not growth below 10 1C. On the other hand,
Fig. 6 represents the estimated probability given by the
LRPU model as a function of pH at different organic acids
concentrations at 7 1C. In this case, inhibition of Listeria

growth occurred at pHs below 5.5 when concentration of
citric and ascorbic acid were above 0.3% w/v. Therefore,
by modifying the environmental factors, formulations of
minimally processed food products can be designed in
order to increase food safety regarding L. monocytogenes

growth.
Ratkowsky (2002) noticed certain problems that arise

from the use of linear and non linear logistic regression
models. The use of small numbers of replicates per
combination of environmental factors (due to the time-
consuming nature of the experimental work) does not
allow convergence to a global optimum or an appropriate
set of conditions. In this case, the convergence obtained
was similar for the PLR model and the LRPU model, since
few replicates were used (8 per condition). A stable solution
can be proposed by fixing one of the cardinal parameters
(T, pH, etc.) to some realistic values. However, non-linear
logistic regression, and logistic regression in general,
involves binomially distributed error, and so techniques
for ensuring convergence are still in progress.
In this study, we compared and assessed three different

models for classifying the growth/no growth boundaries of
L. monocytogenes. It can be noted in all cases that the
predictions obtained by the LRPU model fit better to the
data observed than those obtained with the PLR model
and produced greater classification accuracy of the general-
ization data, without increasing the number of coefficients
of the model.
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In conclusion, the use of LRPU models to determine
growth probability under a set of conditions could
constitute a valuable alternative method for mathematical
modeling.
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