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Abstract— This paper proposes a hybrid multilogistic method-
ology, named logistic regression using initial and radial basis
function (RBF) covariates. The process for obtaining the co-
efficients is carried out in three steps. First, an evolutionary
programming (EP) algorithm is applied, in order to produce an
RBF neural network (RBFNN) with a reduced number of RBF
transformations and the simplest structure possible. Then, the
initial attribute space (or, as commonly known as in logistic
regression literature, the covariate space) is transformed by
adding the nonlinear transformations of the input variables given
by the RBFs of the best individual in the final generation.
Finally, a maximum likelihood optimization method determines
the coefficients associated with a multilogistic regression model
built in this augmented covariate space. In this final step, two
different multilogistic regression algorithms are applied: one
considers all initial and RBF covariates (multilogistic initial-RBF
regression) and the other one incrementally constructs the model
and applies cross validation, resulting in an automatic covariate
selection [simplelogistic initial-RBF regression (SLIRBF)]. Both
methods include a regularization parameter, which has been also
optimized. The methodology proposed is tested using 18 bench-
mark classification problems from well-known machine learning
problems and two real agronomical problems. The results are
compared with the corresponding multilogistic regression meth-
ods applied to the initial covariate space, to the RBFNNs obtained
by the EP algorithm, and to other probabilistic classifiers,
including different RBFNN design methods [e.g., relaxed variable
kernel density estimation, support vector machines, a sparse clas-
sifier (sparse multinomial logistic regression)] and a procedure
similar to SLIRBF but using product unit basis functions. The
SLIRBF models are found to be competitive when compared
with the corresponding multilogistic regression methods and the
RBFEP method. A measure of statistical significance is used,
which indicates that SLIRBF reaches the state of the art.

Index Terms— Artificial neural networks, classification, evolu-
tionary algorithms, evolutionary programming, logistic regres-
sion, radial basis function neural networks.

I. INTRODUCTION

THE pace at which pattern classification algorithms have
been successfully applied to new problems has increased
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exponentially during the last few years [1]. Examples of
application come from all branches of science, technology,
and medicine (e.g., medical diagnosis, handwritten character
recognition, dynamic signature verification, or satellite image
analysis), and in many regards classification is the most
important statistical problem around [2].

The traditional statistical approach to pattern recognition is a
natural application of Bayesian decision theory, and the linear
logistic regression model is one of its main representatives.
As suggested by Hastie and Tibshirani [2], an obvious way
to generalize the linear logistic regression model is to replace
the linear predictors with a nonparametric version of them,
such as an arbitrary regression surface, a more structured high-
dimensional regression surface estimated using procedures as
Friedman’s multivariate adaptive regression [3], or even more
structured nonparametric models such as an additive model of
basis function. This paper aims to develop this last idea, pre-
senting a competitive study in multiclass learning which com-
bines different statistical and soft computing elements such as
multilogistic regression, radial basis function neural networks
(RBFNNs), and evolutionary algorithms (EAs). We broaden
the ideas introduced in a recently proposed combination of
NNs and logistic regression [4], [5]. This recent methodology
[multilogistic regression linear product-unit neural networks
(MRLPU)] allows the generation of hybrid linear/nonlinear
classification surfaces and the identification of possible strong
interactions that may exist between the attributes (also known
as covariates in the logistic regression literature) which define
the classification problem.

This paper presents an extension of this methodology, since
we combine a linear model with a RBFNN nonlinear model
instead of a product-unit NN (PUNN) model. The coefficients
are then estimated using logistic regression (similar to [6]).
The approach, called logistic regression using initial and radial
basis function (LIRBF) covariates, consists of a multilogis-
tic regression model built on the combination of the initial
covariates and the RBFs of a RBFNN (local approximator).
RBFNNs generally use hyper-ellipsoids to split the pattern
space, which is different from multilayer perceptrons that build
their classifications on hyperplanes, defined by a weighted
sum. It is important to point out that, in our method, a true
multiclass formulation is introduced based on multinomial
logistic regression. Strictly speaking, a multinomial logistic
regression formulation for multiclass classification is not new
(see [5], [7]), and it has been previously applied to the training
of RBFNNs [6]. However, it is not usually employed in pattern
recognition and machine learning literature.
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Although logistic regression is a simple and useful proce-
dure, it poses problems when applied to real classification
problems, where we cannot usually automatically assume
that covariates will have additive and purely linear effects
[8]. Thus, our technique overcomes these difficulties by aug-
menting the input vector with new RBF variables. On the
other hand, adding linear terms to a RBFNN yields simpler
models that are easier to interpret. Specifically, the linear
terms reduce both the variance associated with the overall
modeling procedure and the likelihood of ending up with
unnecessary RBFs. In addition, if a covariate only appears
linearly in the final model, then the interpretation of this
covariate is easier than that of a covariate which appears in
a RBF transformation. Logistic regression models are usually
fitted by maximum likelihood, where the iteratively reweighted
least square (IRLS) algorithm is the traditional way to estimate
the maximum likelihood parameters. The algorithm usually
converges since the log-likelihood is concave. However, in
our approach, the nonlinearity of the Gaussian RBFs with
respect to the centers and radii implies that the correspond-
ing Hessian matrix is generally indefinite and the likelihood
function could have local maxima (although the Hessian for
the coefficients is still positive semidefinite). These reasons
justify, in our opinion, the use of an alternative heuristic
procedure such as an EA to estimate the centers and radii
of the model.

The estimation of the coefficients is carried out in three
steps. In a first step, an evolutionary programming (EP)
algorithm determines the number of Gaussian RBFs in the
model and their corresponding centers and radii. The algorithm
aims to produce a reduced number of RBF transformations
with the simplest structure possible, i.e., tries to select the
most important input variables for the estimation of the
RBFs. This step can be seen as a heuristic search in the
coefficients’ model space. Once the basis functions have
been determined by the EP algorithm, a transformation of
the covariate space is considered by adding the nonlinear
transformations of the input variables given by the RBFs of
the best individual in the final generation. The final model is
linear in the set of variables formed by the RBFs and the initial
covariates. Now, the Hessian matrix is positive semidefinite,
and fitting proceeds with a maximum likelihood optimization
method. In this final step, two different multilogistic regression
algorithms are applied: 1) multilogistic (MLogistic), which
considers all initial and RBF covariates, and 2) simplelogistic
(SLogistic), which constructs the model incrementally and
applies cross validation, resulting in an automatic covariate
selection. Both methods include a regularization parameter,
which has also been optimized. This results in two different
models: multilogistic initial-RBF regression (MLIRBF) and
simplelogistic initial-RBF regression (SLIRBF). We evaluate
the performance of our methodology in 18 datasets taken from
the UC Irvine repository [9] and 2 datasets corresponding to
a real agronomical problem of precision farming.

The results are compared with the corresponding multilo-
gistic regression methods applied to the initial covariate space,
to the RBFNNs obtained by the EP algorithm (RBFEP), and
to other probabilistic classifiers, including different RBFNN

design methods [e.g., relaxed variable kernel density estima-
tion (RVKDE)], support vector machines (SVMs), a sparse
classifier [sparse multinomial logistic regression (SMLR)], and
a procedure similar to SLIRBF but using product unit basis
functions (SLIPU). The SLIRBF method is found to obtain
better results than pure SLogistic and RBFEP in almost all
the datasets considered. A measure of statistical significance
is used, which indicates that SLIRBF reaches the state of
the art.

This paper is organized as follows: Section II is devoted
to a brief analysis of some works related to the models
proposed; the description of the LIRBF models is carried
out in Section III; Section IV describes the LIRBF learning
algorithm; Section V contains the experimental results; and
finally, Section VI summarizes the conclusions of our work.

II. RELATED WORKS

This section presents an overview of some research related
to the models proposed from different points of view. We
especially highlight the learning procedure and the framework
of the model. There have been quite a few learning algorithms
proposed for RBFNNs. A successful construction of a RBFNN
model depends on three factors: the design of a proper kernel
(basis) function, the selection of proper centers of kernels,
and the determination of a proper weight structure. Basically,
there are two categories of learning algorithms proposed for
RBFNNs. The first category of learning algorithms simply
places one RBF at each sample [10]. If all the training samples
are selected as hidden centers, the generalization capability
of the network will become so poor that many noised or
deformed samples will not be recognized. However, this can
be avoided by properly regularizing the model. On the other
hand, the second category of learning algorithms attempts
to reduce the number of hidden units in the network, or,
equivalently, the number of RBFs in the model [11]. One
primary motivation behind the design of the second category
of algorithms is to improve the efficiency of the learning
process. Alternatively, there are many approaches to determine
hidden centers. For instance, the number and position of the
RBFs may be fixed and defined a priori [12], or they may
be determined by conducting a clustering analysis of the
training dataset and allocate one hidden unit for each clus-
ter. Algorithms differ by the clustering algorithm employed:
k-means clustering, fuzzy k-means clustering, hierarchical
clustering and self-organizing map NNs, [13], or also input–
output clustering [14].

An interesting alternative is to evolve RBFNNs using EAs.
A very complete state of the art of the different approaches
and characteristics of a wide range of EA and RBFNN
combinations is given in [15]. For example, RBFNN design
has been approached by using evolutionary clustering tech-
niques with local search [16], hybrid algorithms [17], [18], or
multiobjective algorithms [19], or by evolving only the basis
functions [20], [21] or space-filling curves to generate the RBF
centers [22].

On the other hand, many linear parametric models can be
recast into an equivalent dual representation in which the
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predictions are based on a linear combination of a kernel
function evaluated at the training data points. From a structural
point of view, RBFNNs and the LIRBF models proposed
in this paper are closely related to direct kernel methods
[23]. The basis function kernel model provides a general
mechanism for constructing nonlinear generalizations of a
wide range of conventional linear statistical methods, in which
the result is a family of kernel learning methods [24], [25]. The
SVM [26], [27] is perhaps the most common kernel learning
method for statistical pattern recognition. The parameters of a
kernel model are typically given by the solution of a convex
optimization problem, so there is a single global optimum.

The predictions of SVM are not probabilistic and estimate
the optimal decision boundary separating examples belonging
to each class directly (indirect probabilistic discriminative
approach), rather than estimating the a posteriori probability
of class membership and subsequently establishing the de-
cision boundary at some fixed threshold probability (direct
probabilistic generative approach). A possible way to obtain
these probabilities is the use of a confidence estimate, e.g.,
by using a pairwise (“1-versus-1”) approach and estimating
the probabilities from the pairwise probabilities [28]. It is
important to point out that something very similar to the use of
initial covariates in the final predictor function can be achieved
for kernel methods by using a weighted sum of RBFs and
linear kernel functions.

An extension of the SVM in order to offer a natural estimate
of the probability of class membership and to be generalized to
the multiclass case is the kernel logistic regression (KLR) [29],
i.e., replacing the loss function of the SVM by the negative
log-likelihood (NLL) function. Although KLR compromises
the hinge loss function of the SVM, there are some sparse
KLR models such as the informative vector machine [30].

An alternative sparse kernel technique, known as relevance
vector machines (RVMs) [31], is based on a Bayesian formu-
lation of the kernel model introducing a prior to the model
weights governed by a set of hyperparameters, one associated
with each weight, whose most probable values are iteratively
estimated from the data. In contrast to SVM, the kernel
is not required to satisfy the Mercer condition and RVM
provides natural posterior probability outputs. Probabilistic
classification vector machines (PCVMs) [32] modify RVM
by introducing a signed and truncated Gaussian prior over
every weight, where the sign of the prior is determined by
the class label. Both RVM and PCVM are Bayesian sparse
kernel techniques that share many characteristics of SVM
while avoiding its principal limitations without degrading the
general performance.

Nevertheless, it is significant to highlight that the methods
above are specifically designed for two classes. The extension
to more than two classes is usually achieved by considering
“1-versus-all” or “1-versus-1” approaches [33].

A direct multiclass formulation called SMLR is introduced
in [7], where the approach is based on multinomial logistic
regression with a sparsity-promoting prior. By combining a
bound optimization approach with a component-wise update
procedure, the authors derive a fast exact algorithm for learn-
ing sparse multiclass classifiers that scale favorably in both the

number of training samples and feature dimensionality, making
them applicable even to large datasets in high-dimensional fea-
ture spaces. There are some recent applications and extensions
of the SMLR algorithm [34]–[36]. From a different point of
view, direct multiclass approaches have been developed based
on the estimation of kernel density for efficient construction
of RBFNNs. RVKDE [37] works by constructing one RBF
sub-network to approximate the probability density function
of each class of objects in the training dataset. The SMLR
and RVKDE multiclass approaches have been chosen for
comparison with the models proposed in this paper.

Finally, a first proposal of a combination of NNs and logistic
regression is given in two recent studies [4], [5]. The model is
based on the hybridization of a linear multilogistic regression
model and a nonlinear PUNN model for binary and multiclass
classification problems. The main differences between these
studies and this paper are the following.

1) First of all, this paper considers RBFs (which are local
approximators) for the nonlinear part of the model, while
the MRLPU method is based on PUs (which are global
approximators).

2) The EA presented in this paper is based on the deter-
mination of the RBFNN models, where population ini-
tialization (radii and centers of the Gaussian functions)
is more complex than that of the PUNN models.

3) The SLogistic algorithm used in this paper (see Sec-
tion IV-A) is more advanced than the IRLS method
used for MRLPU, and performs an automatic structural
simplification of the model. This results in more robust
maximum-likelihood estimations and, in general, avoids
overfitting.

4) A more exhaustive 10-fold experimental design has been
performed with 10 repetitions per each fold, since the
whole process has been automated.

III. LIRBF MODELS

In the classification problem, measurements xi , i =
1, 2, . . . , k, are taken on a single individual (or object), and
the individuals are classified into one of the J classes on
the basis of these measurements. It is assumed that J is
finite, and the measurements xi are random observations
from these classes. Let D = {(xn, yn); n = 1, 2, . . . , N} be
a training dataset, where xn = (x1n, . . . , xkn) is the vector
of measurements taking values in � ⊂ R

k , and yn is the
class level of the nth individual. The common technique for
representing class levels using a “1-of-J” encoding vector is
adopted, y = (

y(1), y(2), . . . , y(J )
)
, such that y(l) = 1 if x

corresponds to an example belonging to class l and y(l) = 0
otherwise. Based on the training samples, we wish to find
a classification rule F : � → {1, 2, . . . , J } for classifying
the individuals. In other words, F provides a partition, say
D1, D2, . . . , DJ , of �, where Dl corresponds to the lth class,
l = 1, 2, . . . , J , and measurements belonging to Dl will be
classified as coming from the lth class. A misclassification
occurs when the decision rule F assigns an individual (based
on the measurement vector) to a class j when it is actually
coming from a class l �= j .
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To evaluate the performance of the classifiers, the correct
classification rate (CC R or C) is defined by

C = 1

N

N∑

n=1

I (F(xn) = yn) (1)

where I (•) is the zero-one loss function. A good classifier
tries to achieve the highest possible C for a given problem. It
is usually assumed that the training data are independent and
identically distributed samples from an unknown probability
distribution. Suppose that the conditional probability that x be-
longs to class l verifies: p

(
y(l) = 1

∣
∣ x

)
> 0, l = 1, 2, . . . , J ,

x ∈ �, and sets the function

log
p

(
y(l) = 1

∣
∣ x

)

p
(

y(J ) = 1
∣∣ x

) = fl (x,θl)

where θl is the weight vector corresponding to class l, the
right-hand side of the equation is the predictor function, and
f J (x,θJ ) = 0. In this way, the probability for one of the
classes (the last one, in our case) does not need be estimated.
Under a multinomial logistic regression, the probability that x
belongs to class l is then given by

p
(

y(l) = 1
∣
∣
∣ x,θ

)
= exp fl (x,θl)

∑J
j=1 exp f j

(
x,θ j

) ,

l = 1, 2, . . . , J (2)

where θ = (θ1,θ2, . . . ,θJ−1).
The classification rule coincides with the optimal Bayes’

rule. In other words, an individual should be assigned to
the class which has the maximum probability, given the
measurement vector x

F(x) = l̂, where l̂ = arg max
l

p
(

y(l) = 1
∣
∣
∣ x,θ

)
,

l = 1, . . . , J.

The predictor function of our logistic regression model pro-
posal is based on the combination of the standard linear model
in the initial covariates and a nonlinear model constructed
with RBF transformed covariates, which captures well-defined
locations in the covariate space. The general expression of the
predictor function is given by

fl(x,θl) = αl
0 +

k∑

i=1

αl
i xi +

m∑

j=1

βl
j exp

(

−
∥
∥x − c j

∥
∥2

r2
j

)

(3)

where l = 1, 2, . . . , J − 1, θl = (αl ,βl , W) is the vector of
parameters for each predictor function, αl = (αl

0, α
l
1, . . . , α

l
k)

and βl = (
βl

1, . . . , β
l
m

)
are the coefficients of the multilogistic

regression model, and W = (w1, w2, . . . , wm) are the para-
meters of the RBF nonlinear transformations, w j = (c j , r j ),
c j = (c j1, c j2, . . . , c jk) is the center or average of the
j th Gaussian RBF transformation, r j is the corresponding
radius or standard deviation (SD) and c j i , r j ∈ R. Thus,
the final model is equivalent to a RBFNN with “skip-layer”
connections (in standard NN terminology), where the softmax
transformation is applied to the outputs of the network. We
have selected Gaussians with isotropic covariance matrices [8].
Although this restriction influences our results, the optimiza-
tion of anisotropic Gaussian RBFs (with different SDs in each

direction) would have increased the number of parameters to
be adjusted by the EA (associated to the product of the number
of characteristics by the number of basis functions), thereby
increasing the computational cost.

IV. LIRBF LEARNING ALGORITHM

In the supervised learning context, the components of the
weight vectors θ = (θ1,θ2, . . . ,θJ−1) are estimated from
the training dataset D. To perform the maximum likelihood
estimation of θ, one can minimize the NLL function

L(θ) = − 1

N

N∑

n=1

log p (yn| xn,θ)

= 1

N

N∑

n=1

[

−
J−1∑

l=1

y(l)
n fl(xn,θl)

+ log
J−1∑

l=1

exp fl (xn,θl)

]

(4)

where θl = (αl ,βl , W) and fl(xn,θl) corresponds to the
LIRBF model defined in (3).

The nonlinearity of the model with respect to the parameters
c j and r j of W and the indefinite character of the associated
Hessian matrix of L(θ) do not recommend the use of gradient-
based methods to maximize the log-likelihood function. More-
over, the optimal number of basis functions of the model (i.e.,
the number of RBF transformations) is unknown. Thus, the
estimation of the vector parameter θ̂ is carried out by means
of the hybrid procedure described below.

The methodology proposed is based on the combination of
an EP algorithm (global explorer) and a standard maximum
likelihood optimization method (local exploiter). In a first
step, the EP algorithm is applied to design the structure and
train the weights of an RBFNN. The evolutionary process
determines the number m of RBFs in the model, and the
corresponding matrix W = (w1, w2, . . . , wm). Once the basis
functions have been determined by the EP algorithm, we
consider a transformation of the input space by adding the
nonlinear transformations of the input variables given by the
RBFs of the best individual in the final generation of the EP
algorithm (i.e., the overall best individual obtained by the EP
algorithm).

The model is now linear in these new variables and the
initial covariates. The remaining coefficient vectors α and
β are calculated by the maximum likelihood optimization
method which involves choosing the parameters that maximize
the probability of the data points observed. For the multilo-
gistic regression model, there are no closed-form solutions for
these estimates. Instead, the numeric optimization algorithms
that have to be used are those that approach the maximum
likelihood solution iteratively and reach it at the limit. In the
next subsection, two algorithms for obtaining this maximum
likelihood solution are introduced. Then, the different steps of
the LIRBF learning algorithm are described and, in the last
subsection, the details of the EP algorithm are given.
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A. Algorithms for Multilogistic Regression
Maximum Likelihood Optimization

In this paper, two different algorithms have been consid-
ered for obtaining the maximum likelihood solution for the
multilogistic regression model, both available on the WEKA
machine learning workbench [38].

1) MLogistic: It is an algorithm for building a multinomial
logistic regression model with a ridge estimator to guard
against overfitting by penalizing large coefficients, based on
the work by le Cessie and van Houwelingen [39]. For adjust-
ing this hyperparameter, we have performed a 10-fold cross
validation with the following range: {10−2, 10−1.5, . . . , 102}.

In order to find the coefficient matrices α and β for which
L(θ) in (4) is minimized, a quasi-Newton method is used.
Specifically, the method used is the active sets method with
the Broyden–Fletcher–Goldfarb–Shanno (BFGS) update [40].

2) SLogistic: This algorithm builds multinomial logistic
regression models by using the LogitBoost algorithm [41],
which was proposed by Friedman et al. for fitting additive
logistic regression models by maximum likelihood. These
models are a generalization of the (linear) logistic regression
models.

LogitBoost is a boosting algorithm that performs forward
stagewise fitting: in every iteration i , it computes “response
variables” that encode the error of the model currently fit on
the training examples (in terms of probability estimates), and
then tries to improve the model by adding a new function
fi j (x) to the committee of functions Fj (x), 1 ≤ j ≤ J .

As shown by Friedman et al. [41], this amounts to perform-
ing a quasi-Newton step in every iteration, where the Hessian
matrix is approximated by its diagonal. In the special case that
the fi j (x) and so the Fj (x) are linear functions of the input
covariates, the additive logistic regression model is equivalent
to the linear logistic model. Assuming that Fj (x) = αT

j x,
the equivalence of the two models is established by setting
α j = β j − βJ for j = 1, . . . , J − 1 and αJ = βJ . This
means that LogitBoost can be used for learning multilogistic
regression models by fitting a standard least-squares regression
function as the fi j .

However, it is also possible to use even simpler functions for
the fi j , simple regression functions that perform a regression
on only one covariate present in the training data. In this way,
fitting simple regression by least-squared error means fitting
a simple regression function to each covariate in the data
using least squares as the error criterion, and then selecting
the covariate that gives the smallest squared error

fi j = βl xl + γl , l = arg min
l

El j , l = 1, . . . , k (5)

where i is the number of iteration of the LogitBoost algorithm,
j is the class considered, k is the number of inputs, βl is the
slope of the simple linear regression, γl is the corresponding
intercept, and Elj is the weighted sum of squared error
of the linear regression considering only the lth covariate
with respect to the expected class label Y j . The final model
found by LogitBoost will be the same because quasi-Newton
stepping is guaranteed to actually find the maximum likelihood
solution if the likelihood function is convex. Using simple

regression instead of multiple ones will basically slow down
the process, but, if it is stopped before it converges, this
will result in automatic covariate selection, because the model
will only include the most relevant covariates present in data.
The SLogistic algorithm is based on applying LogitBoost
with simple regression functions and determining the optimum
number of iterations by cross validation. In this paper, we have
slightly modified the criterion for the selection of the covariate
in iteration i by adding a regularization term

fi j = βl xl + γl, l = arg min
l

(Elj + λ|βl |),
l = 1, . . . , k (6)

where λ is a regularization hyperparameter. This results in
selecting not only the covariate that obtains the minimum
error, but also taking into account its coefficient absolute value.
Consequently, there are two hyperparameters that have to be
adjusted for applying this modified version of SLogistic, λ and
the maximum number of iterations. The number of iterations
has been obtained by using a fivefold cross validation, with
a maximum number of 500 iterations. For adjusting the λ
hyperparameter, we have performed a 10-fold cross validation
with the following range: λ ∈ {10−2, 10−1.5, . . . , 102}. Once
λ and the maximum number of iterations are obtained, the
SLogistic algorithm is run again with the whole training set.
Further details about the algorithm can be found in [42].

B. Estimation of the Model Coefficients

In this subsection, the steps of the LIRBF learning algorithm
are described in detail. The process is structured in three steps.

Step 1: For determining the best RBFNN model, we apply
an EP algorithm to find the basis functions

B(x, W) = {B1(x, w1), B2(x, w2), . . . , Bm(x, wm)}
corresponding to the nonlinear part of fl(x,θl) in (3). We have
to determine the number of basis functions m and the weight
matrix W. To apply evolutionary NN techniques, we consider
a RBFNN with softmax outputs and the standard structure:
an input layer with a node for every input variable; a hidden
layer with several RBFs; and an output layer with J −1 nodes,
where J is the number of classes. There are no connections
between the nodes of a layer and none between the input and
output layers either. A scheme of these models is given in
Fig. 1.

The activation function of the j th node in the hidden layer
is given by

B j (x, w j ) = exp

(

−
∥
∥x − c j

∥
∥2

r2
j

)

where c j = (c j1, . . . , c jk) and c j i is the weight of the
connection between the i th input node and the j th RBF.

The activation function of the lth output node is given by

gl(x,βl, W) = βl
0 +

m∑

j=1

βl
j B j (x, w j ) (7)

where βl
j is the weight of the connection between the j th RBF

and the lth output node and βl
0 is the bias of the lth output
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Fig. 1. Structure of RBFNNs: an input layer with k input variables, a hidden
layer with m RBFs, and an output layer with J − 1 nodes.

node. The transfer function of all output nodes is the identity
function.

The weight matrix W is estimated by means of an evolution-
ary NN algorithm (detailed in Section IV-C) that optimizes the
error function given by the NLL for N observations associated
with the RBFNN model

L∗(β, W) = 1

N

N∑

n=1

[

−
J−1∑

l=1

y(l)
n gl(xn,β

l , W)

+ log
J−1∑

l=1

exp gl(xn,β
l , W)

]

. (8)

Although in this step the evolutionary process obtains a
concrete value for the β vector, we only consider the estimated
weight vector Ŵ = (ŵ1, ŵ2, . . . , ŵm), which builds the basis
functions. The RBFs are appended to the initial covariates
space and the values for the β vector need to be re-estimated
together with the coefficients of the initial covariates (α co-
efficient vector), since we consider them to be new covariates
of the problem.

Step 2: The following transformation of the input space is
introduced by including the nonlinear basis functions obtained
by the EP algorithm in Step 1 for the best model of the final
generation (i.e., the overall best individual obtained by the EP
algorithm, given that the algorithm is elitist)

H : R
k → R

k+m ,

(x1, x2, . . . , xk) → (x1, x2, . . . , xk, z1, z2, . . . , zm)

where z1 = B1(x, ŵ1), z2 = B2(x, ŵ2), . . ., zm = Bm(x, ŵm).
Step 3: Using a matrix notation, the model of (3) can be

expressed as

fl (x,θl) = αlx + βlz, l = 1, 2, . . . , J − 1

where x = (x1, x2, . . . , xk) and z = (z1, z2, . . . , zm).

We minimize the NLL function of (4) with respect to the
parameters α, β of θ

L(α,β) = 1

N

N∑

n=1

[

−
J−1∑

l=1

y(l)
n (αlxn + βlzn)

+ log
J−1∑

l=1

exp(αlxn + βlzn)

]

where xn = (1, x1n, . . . , xkn). Now, the Hessian matrix of
the NLL in the new variables x1, x2, . . . , xk, z1, z2, . . . , zm is
semidefinite positive.

In this final step, both algorithms presented in Sec-
tion IV-A have been applied to obtain the parameter ma-
trix θ. This results in two different models: one with all
x1, x2, . . . , xk, z1, z2, . . . , zm covariates present in the model
(MLogistic algorithm), and the other with only those vari-
ables selected by the SLogistic algorithm (see Section IV-A).
These two approaches will be called MLogistic initial-RBF
regression (MLIRBF) and SLogistic initial-RBF regression
(SLIRBF), respectively.

For comparison purposes, we have also considered the
multilogistic regression models that are obtained with these
two algorithms but constructed only from the nonlinear trans-
formations given by the RBFNN of the EP algorithm, i.e.,
z1, z2, . . . , zm . This results in two other approaches, which we
will call MLogistic RBF regression (MLRBF) and SLogistic
RBF regression (SLRBF).

Finally, Fig. 2 presents a schematic view of the steps of the
methodology and the different associated models. The methods
are represented in a double squared box. The best RBFNN
individual obtained in Step 1 by the EP algorithm is also
evaluated (RBFEP method).

C. Evolutionary Acquisition of the RBF
Nonlinear Transformations

This subsection presents the EA used for obtaining the RBF
nonlinear transformations. The algorithm is aimed to produce
a reduced number of RBF transformations with the simplest
structure possible, i.e., trying to select the most important input
variables for the estimation of the RBFs.

From the different paradigms of evolutionary computation,
we have chosen EP because we are evolving artificial NNs.
Therefore, crossover is not used because of its potential disad-
vantages in evolving artificial networks [43]. The population-
based EA for architectural design and the estimation of the
real coefficients have points in common with other EAs in
the literature [43]–[46]. The search begins with an initial
population, and after each iteration the population is updated
using a population-update algorithm, applying parametric and
structural mutation to the best 10% and the best 90% of the
population, respectively. The algorithm is elitist with respect
to the best individual, and the best 10% of individuals replace
the worst 10% of individuals in each generation. The stop
condition is defined as follows: the variance of the fitness of
the best 10% of the population is less than a user-defined
value, or if a maximum number of generations is reached.
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Fig. 2. Different steps in the LIRBF methodology. The different models associated with this methodology are presented in a double squared box.

The RBFEP algorithm is detailed in Fig. 3, where pB is the
best optimized RBFNN returned by the algorithm. The main
characteristics of the algorithm are the following.

1) Representation of the Individuals: The algorithm evolves
architectures and connection weights simultaneously, each
individual being a fully specified RBFNN. The NNs are rep-
resented using an object-oriented approach and the algorithm
deals directly with the RBFNN phenotype. Each connection
is specified by a binary value, indicating whether the con-
nection exists, and a real value representing its weight. As the
crossover is not considered, this object-oriented representation
does not assume a fixed order between the different RBFs.

In order to define the topology of the NNs, two parameters
are considered: Mmin and Mmax. They correspond, respec-
tively, to the minimum and maximum number of RBFs in
the whole evolutionary process.

2) Error and Fitness Functions: We consider L∗(β, W)
defined in (8) as the error function of an individual g(x,β, W)
in the population. Observe that g is an RBFNN and can be
seen as a multivaluated function

g(x,β, W) =
(

g1(x,β1, W), . . . , gJ−1(x,βJ−1, W)
)

where gl(x,βl , W) is defined in (7).

The fitness measure needed for evaluating the individuals
(Fig. 3, Steps 2, 7, and 16) is a strictly decreasing trans-
formation of the error function L∗(β, W) given by A(g) =
1/(1 + L∗(β, W)), where 0 < A(g) ≤ 1.

3) Initialization of the Population: The initial population
is generated by trying to obtain RBFNNs with the maximum
possible fitness. The necessity of initial well-positioned centers
was experimentally checked, making the RBFEP algorithm
obtain a better performance than purely randomly generated
centers. A classical k-means clustering process is applied
to obtain these initial centers. The increase in the selective
pressure balances out with the large population size of the
algorithm and the use of highly disruptive structural mutators.

First, 5000 random RBFNNs are generated (Fig. 3, Step 1),
where the number of RBFs m is a random value in the interval
[Mmin, Mmax]. The number of connections between all RBFs
of an individual and the input layer is a random value in the
interval [1, k] and all of them are connected with the same
randomly chosen input variables. In this way, all the RBFs of
each individual are initialized using the same random subset of
the input variables (this is necessary to later apply the k-means
algorithm). A random value in the [−I, I ] interval is assigned
for the weights between the input layer and the hidden layer
and in the [−O, O] interval for those between the hidden layer



GUTIÉRREZ et al.: LOGISTIC REGRESSION BY MEANS OF EVOLUTIONARY RBFNNS 253

RBFEP Algorithm:

Input:  Training dataset (D)

Output:  Best optimized RBFNN (pB)

1: PI    ← {pI
1
, ..., pI

5000
}   //   pI

i 
 is a randomly generated

 RBFNN

2: ∀pI
i  
∈ PI,  f I

i  
← A(p I

i
)  // Evaluate fitness

3: P ← {{p
(1)

, ..., p
(5000)

},    (p
(i)  

≺ p
(j)

)  ⇐⇒  (f I
i  
> f I

j
)

 // Sort individuals in PI   by increasing f I
i

4:  P    ← {p
(1)

, ..., p
(500)

} // Retain the best 500 RBFNNs

5:  ∀p
(i) 

∈ P, p
(i) 

← k−means(p
(i)

)  //  Improve individuals’

 centres

6: while not Stop Condition do

7:  ∀p
i 
∈ P,  f

i   
←  A(p

i
)  // Evaluate fitness

8:  P    ← {p
(1)

, ..., p
(500)

},    (p
(i)  

≺ p
(j)

)    ⇐⇒    ( f
i  
> f

j
)

 // Sort individuals in P by increasing f
i

9:  pB  ←  p
(1)   

// Store Best Individual

10:  PP    ← {p
(1)

, ..., p
(50)

} // Parametric mutation parents

  (best 10% of individuals)

11:  PS    ← {p
(1)

, ..., p
(449)

} // Structural mutation parents

 (best 90% of individuals minus one)

12:  ∀pP
(i)   

∈   PP,   pP
(i)

  ←  parametricMutation(pP
(i)

) //

 Apply parametric mutation

13:  ∀pS
(i)   

∈   PS,   pS
(i)

  ← structuralMutation(pS
(i)

) //

 Apply structural mutation

14:  P ← PP ∪ PS ∪ {pB} // Offspring including the elite

15:  end while

16: ∀p
i 
∈ P,  f

i   
←  A(p

i
)  // Evaluate fitness

17:  P    ← {p
(1)

, ..., p
(500)

},    (p
(i)  

≺ p
(j)

)    ⇐⇒    (f
i  
> f

j
)

  // Sort individuals in P by increasing f
i

18:  pB  ←  p
(1)

19:  return   pB

Fig. 3. RBFEP training algorithm framework.

and the output layer. The individuals obtained are evaluated
using the fitness function, and the initial population is finally
obtained by selecting the best 500 RBFNNs (Fig. 3, Steps
2–4).

In order to improve the randomly generated centers, the
standard k-means clustering algorithm [47] is applied using
these random centers as the initial centroids for the algorithm
and a maximum number of iterations of 100 (Fig. 3, Step 5).

4) Parametric Mutation: Parametric mutation (Fig. 3,
Step 10) alters the value of the coefficients of the model.
It is accomplished for each coefficient w ∈ (β, W) of the
g(x,β, W) individual adding a Gaussian noise, w(t + 1) =
w(t)+ξ(t), where ξ(t) ∈ N(0, α(t)) and N(0, α(t)) represent
a 1-D normally distributed random variable with mean 0 and
variance α(t). The weights are sequentially mutated, hidden

node after hidden node, and a standard simulated annealing
process [48] is applied to accept or reject the modifications
in each RBF. Thus, if �A is the difference in the fitness
function after and before the random step, the criterion is as
follows: if �A ≥ 0, the step is accepted, and if �A < 0,
the step is accepted with a probability exp(�A/T (g)), where
the temperature T (g) of an individual g is given by T (g) =
1 − A(g), 0 ≤ T (g) < 1.

The variance α(t) is updated throughout the evolution.
There are different methods to update the variance. We use one
of the simplest methods, the 1/5 success rule of Rechenberg
[49]. This rule states that the ratio of successful mutations
should be 1/5. Therefore, if the ratio of successful mutations
is greater than 1/5, the mutation deviation should increase,
otherwise, the deviation should decrease. Thus

α(t + s) =

⎧
⎪⎨

⎪⎩

(1 + λ)α(t), if sg > 1/5

(1 − λ)α(t), if sg < 1/5

α(t), if sg = 1/5

where sg is the frequency of successful mutations over s
generations and λ gives the magnitude of the updating. The
adaptation tries to avoid being trapped in local minima and to
speed up the evolutionary process when searching conditions
are suitable.

5) Structural Mutation: Structural mutation (Fig. 3,
Step 11) implies a modification in the structure of the RBFNNs
and allows the exploration of different regions in the search
space, helping to keep the diversity of the population. There
are five different structural mutations: node addition, node
deletion, connection addition, connection deletion, and node
fusion. These five mutations are applied sequentially to each
network, each one with a specific probability. The node
mutations are performed as follows.

a) Node addition. One or more RBFs are added to the
hidden layer. The origin nodes of the connections from
the input layer are chosen randomly and have a random
value in the interval [−I, I ]. The origin nodes of the
connections to the output layer are chosen randomly and
their values are random values in the interval [−O, O].

b) Node deletion. One or more RBFs, together with their
connections, are randomly selected and deleted.

c) Node fusion. Two randomly selected RBFs of the mu-
tated individual, a and b, are replaced by a new node
c, which is a combination of the two. The connections
common to both basis functions are kept, with a weight
given by

cci = ra

ra + rb
cai + rb

ra + rb
cbi , β i

c = (β i
a + β i

b)

2

rc = (ra + rb)

2
.

Those connections not shared by the basis functions are
inherited by c with a probability of 0.5 and their weight
is unchanged.

The number of nodes added or deleted in node addition,
node deletion, and node fusion mutations is calculated as
�min + uT (g)[�max − �min], u being a random uniform
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variable in the interval [0, 1], T (g) = 1− A(g) the temperature
of the neural net, and �min and �max a minimum and
maximum number of nodes specified as parameters.

The structural connection mutations are performed as
follows.

a) Connection addition. Connection addition mutations are
first performed in the hidden layer and then in the
output layer. When adding a connection from the input
layer to the hidden layer, a node from each layer is
randomly selected, and then the connection is added with
a random weight. A similar procedure is performed from
the hidden layer to the output layer.

b) Connection deletion. In the same way, connection dele-
tion mutation is first performed in the hidden layer
and then in the output layer, choosing the origin node
randomly from the previous layer and the target node
from the mutated layer.

We apply connection mutations sequentially for each mu-
tated neural net, first adding (or deleting) 1 + u[�ono] con-
nections from the hidden layer to the output layer, and then
adding (or deleting) 1 + u[�hnh] connections from the input
layer to the hidden layer. u is a random uniform variable in
the interval [0, 1], �o and �h are previously defined ratios of
number of connections in the hidden and the output layer, and
no and nh are the current number of connections in the output
and the hidden layers.

Instead of applying repair mechanisms, the mutators are
applied only if the net generated is valid, otherwise, a new
mutation is randomly chosen. Parsimony is also encouraged
in evolving the networks by attempting the five structural
mutations sequentially, where node or connection deletion and
node fusion are always attempted before addition. Moreover,
the deletion and fusion operations are made with higher prob-
ability (T (g) for deletion and fusion mutations, and T 2(g) for
addition ones). If a deletion or fusion mutation is successful,
no other mutation will be made. If the probability does not
select any mutation, one of the mutations is chosen at random
and applied.

6) Parameters of the Algorithm: All the parameters used
in the EA have the same heuristic values in all the problems
analyzed below. The use of an EA, which dynamically adapts
to the problem evaluated, results in a performance which is
negligibly affected by minor changes in these parameters.

We have done a simple linear rescaling of the input variables
in the interval [−2, 2], X∗

i being the transformed variables.
The centers c j i are initialized in this interval (i.e., [−I, I ] =
[−2, 2]), and the coefficients βl

j are initialized in the [−5, 5]
interval (i.e., [−O, O] = [−5, 5]). The initial value of the
radii r j is obtained as a random value in the interval (0, dmax],
where dmax is the maximum distance between two training
input examples.

The size of the population is N = 500. We have considered
α(0) = 0.5, λ = 0.1, and s = 5 for the parametric mutations.
For the structural mutations, the number of RBFs that can
be added or removed in a structural mutation is within the
[�min,�max] = [1, 2] interval. The ratio of the number of
connections to add or delete in the hidden and the output
layer during structural mutations is �o = 0.05 and �h = 0.3.

A wide enough range for the number of hidden nodes is used
(Mmin = 1 and Mmax = 14).

The stop criterion is reached whenever one of the following
two conditions is fulfilled: the variance of the fitness of the best
10% of the population is less than 10−4; or 500 generations
are completed.

V. EXPERIMENTS

The proposed methodology is applied to 18 datasets taken
from the UCI repository [9], to test its overall performance
when compared to other methods. Two additional datasets de-
scribed in Section V-C have been included, which correspond
to a real agronomical problem of discriminating cover crops
in olive orchards. The datasets have been included on a public
website.1

The first subsection defines the experimental design and the
next one describes the performance evaluation and the model
selection for the different methods compared. Characteristics
of the real agronomical problems are given in the next sub-
section. Then, the comparison of the proposed models to the
SLogistic, MLogistic, and RBFEP methods is presented, and
the next subsection is devoted to a comparison to other related
probabilistic classifiers. The last two subsections include a
study of two of the best models obtained and the computation
time required by the different algorithms, respectively.

A. Experimental Design

The selection of the methods used for the comparison is
based on their similarities to the model and the methodol-
ogy proposed. In this way, the proposed methods (MLRBF,
SLRBF, MLIRBF, and SLIRBF) are compared to the following
algorithms.

1) Multilogistic regression methods, including the SLo-
gistic and MLogistic algorithms applied to the initial
covariate space (see Section IV-A). As our models are
logistic regression models, it is necessary to compare
their performance to standard logistic regression algo-
rithms.

2) The RBFEP method. As our models are built from the
RBFs of the best RBFNN obtained by the EP algorithm,
it is necessary to compare their performance to the
original RBFEP method.

3) Some high-performance probabilistic classifiers.

a) A Gaussian RBF network (RBFN) [6], deriv-
ing the centers and width of hidden units using
k-means and combining the outputs obtained from
the hidden layer using logistic regression. k-means
is applied separately to each class to derive k
clusters for each class. The structure and learning
process of this RBFN is similar to that of the
MLRBF method.

b) AdaBoost.M1 [50], using RBFN as the base learner
and the maximum number of iterations set to 100
iterations [Ada100(RBFN)].

1Available at http://www.uco.es/ayrna/index.php?lang=en (“Datasets”
section).
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TABLE I

CHARACTERISTICS OF THE 20 DATASETS USED FOR THE EXPERIMENTS: NUMBER OF INSTANCES (SIZE), NUMBER OF REAL (R), BINARY (B), AND

NOMINAL (N) INPUT VARIABLES, TOTAL NUMBER OF INPUTS (#IN.), NUMBER OF CLASSES (#OUT), AND PER-CLASS DISTRIBUTION OF THE

INSTANCES (DISTRIBUTION)

Dataset Size R B N #In. #Out. Distribution

Hepatitis 155 6 13 − 19 2 (32, 123)

Glass(G2) 163 9 − − 9 2 (87, 76)

Sonar 208 60 − − 60 2 (97, 111)

Heart-c 302 6 3 4 26 2 (164, 138)

Ionosphere 351 33 1 − 34 2 (126, 225)

Vote 435 − 16 − 16 2 (267, 168)

Australian 690 6 4 5 51 2 (307, 383)

Breast-w 699 9 − − 9 2 (458, 241)

German 1000 6 3 11 61 2 (700, 300)

Post-Op. 90 − 1 6 20 3 (2, 24, 64)

Iris 150 4 − − 4 3 (50, 50, 50)

Newthyroid 215 5 − − 5 3 (150, 35, 30)

Balance 625 4 − − 4 3 (288, 49, 288)

Cortijo(Sp) 80 7 − − 7 4 (40, 20, 10, 10)

Cortijo(Su) 50 7 − − 7 4 (10, 20, 10, 10)

Lymph. 148 3 9 6 38 4 (2, 81, 61, 4)

Anneal 898 6 14 18 59 5 (8, 99, 684, 67, 40)

Glass 214 9 − − 9 6 (70, 76, 17, 13, 9, 29)

Zoo 101 1 15 − 16 7 (41, 20, 5, 13, 4, 8, 10)

Audiology 226 − 61 8 96 24 (1, 1, 57, 22, 1, 2, 20, 48, 2, 6, 2, 4,

2, 2, 9, 3, 1, 2, 22, 4, 1, 4, 8, 2)

All nominal variables are transformed into binary variables.
Heart-c: Heart disease (Cleveland); Lymph.: Lymphography; Post-Op.: Post-operative.

c) C − SVM [51] with RBF kernels (SVM). From
a structural point of view, the SVMs are related
to RBFNNs and the LIRBF models proposed in
this paper and they have become one of the most
popular and developed methods nowadays. In order
to deal with the multiclass case, a “1-versus-1”
approach has been considered, following the rec-
ommendations of Hsu and Lin [33].

d) RVKDE [37]. This is a very interesting learning al-
ternative for the efficient construction of RBFNNs.

e) SMLR [7]. This method has been selected as a
good representative of recently developed sparse
classifiers (RVM, PCVM, etc.) and, as far as we are
concerned, the only genuine multinomial classifier
in this context. The SMLR method was run by
using Gaussian kernels centered on all the training
points (following the SVM configuration).

f) SLIPU. This algorithm consists of applying the
MRLPU methodology proposed in two previous
papers [4], [5] but using the SLogistic algorithm
instead of the IRLS method. The differences be-
tween MRLPU and LIRBF were analyzed in Sec-
tion II. The SLogistic algorithm has been used
for the comparisons because we want to analyze
the effect of using RBFs instead of PUs, and not
the effect of the maximum-likelihood optimization
algorithm.

Thorough experiments on several datasets have been per-
formed. The selected datasets present different numbers of
instances, features, and classes (see Table I).

The RBFEP algorithm was implemented in JAVA using the
evolutionary computation framework JCLEC2 [52]. For the
MLRBF, SLRBF, MLIRBF, SLIRBF, and SLIPU methods,
the RBFEP algorithm was modified slightly, applying the
SLogistic and MLogistic algorithms from WEKA [38]. We
also used “libsvm” [53] to obtain the results of the SVM
method, and WEKA to obtain the results of the RBFN
and the Ada100(RBFN) methods. The RVKDE algorithm is
implemented and available in the “rvkde” software package,3

and the SMLR method is also widely available in a Java
package.4

Regarding the parameters of the RBFEP algorithm, the
values for all the parameters are common for all datasets and
they were introduced in Section IV-C.6. In order to perform
a fair comparison, the parameter values for the EP algorithm
used for obtaining the SLIPU models are the same as those
used for the RBFEP algorithm.

B. Performance Evaluation and Model Selection

Performance evaluation and model selection were carried
out in the following way.

1) For the RBFEP, MLRBF, MLIRBF, SLRBF, SLIRBF,
and SLIPU methods, a 10-fold cross validation was
considered for performance evaluation. Ten runs of the
RBFEP algorithm were run per each fold, in order
to take into account the randomness of the method,

2Available at http://jclec.sourceforge.net.
3Available at http://mbi.ee.ncku.edu.tw/rvkde/.
4Available at http://www.cs.duke.edu/∼amink/software/smlr/.
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resulting in a total of 100 runs. Per each run, the
model selection involved the adjustment of the differ-
ent hyperparameters of the logistic regression methods.
Once the RBFs were obtained by the RBFEP algo-
rithm, the adjustment was performed using a nested
cross validation applied over the corresponding training
set, selecting the value for the parameter that resulted
in the lowest cross-validated error, and repeating the
training with the selected value and the complete training
set. Concretely, the following hyperparameters were
optimized.

a) The ridge parameter of the MLRBF and MLIRBF
methods was adjusted using a 10-fold cross val-
idation with the following range: λ ∈ {10−2,
10−1.5, . . . , 102}.

b) The λ regularization parameter of the SLRBF,
SLIRBF, and SLIPU methods was adjusted using a
10-fold cross validation with the following range:
λ ∈ {10−2, 10−1.5, . . . , 102}. Per each λ value,
the maximum number of iterations has to be also
adjusted, and, in this case, a 5-fold cross validation
with a maximum of 500 iterations was used: the
corresponding training set was stratified in five
folds, SLogistic was run on every training set up
to a maximum number of 500 iterations and the
classification error on the respective test set was
logged. Afterwards, SLogistic was run again on all
data using the number of iterations that gave the
smallest error on the test set averaged over the five
folds. The reason why a five fold was considered in
this case is that we experimentally checked that this
hyperparameter is less sensitive than the regulariza-
tion parameter, and the additional computational
cost of a 10-fold cross validation was not really
necessary.

2) For all the other methods (SLogistic, MLogistic, RBFN,
Ada100RBFN, SVM, RVKDE, and SMLR), the results
were obtained performing 10 times a 10-fold cross
validation, because they are all deterministic methods,
i.e., they are not based on random values and they return
the same result for each execution. Although this is not
a mandatory methodology for deterministic methods, it
can be found in recent works [42]. Per each training
fold of the 100 runs, the different hyperparameters
involved in each method were adjusted using also a
nested cross validation applied over the corresponding
training set, selecting the value for the parameter that
resulted in the lowest cross-validated error, and repeating
the training with the selected value and the complete
training set. Concretely, the following hyperparameters
were optimized.

a) For the selection of the SVM hyperparameters
(regularization parameter C , and width of the
Gaussian functions γ ), a grid search algorithm
was applied with a 10-fold cross validation, using
the following ranges: C ∈ {2−5, 2−3, . . . , 215} and
γ ∈ {2−15, 2−13, . . . , 23}.

b) The RVKDE algorithm includes three hyperpara-
meters (β, k1, and k2, see [37] for more details)
that were also optimized using a grid search with
10-fold cross validation and the following ranges:
β ∈ {1, 1.5, . . . , 5}, k1 ∈ {1, 2, . . . , 30} and k2 ∈
{1, 2, . . . , 30}.

c) The main hyperparameter for the SMLR algo-
rithm is the λ regularization parameter, which
was selected by 10-fold cross validation with the
range λ ∈ {10−2, 10−1.5, . . . , 102}. Kernel width
parameter was selected by using the result of the
cross validation for the SVM: the best width for
SVM was then used for SMLR. This was done as
suggested by Krishnapuram et al. [7].

C. Description of the “Cortijo(Sp)” and “Cortijo(Su)”
Datasets

Both datasets correspond to a real agronomical problem
of precision farming, which consists of discriminating cover
crops in olive orchards as affected by their phenological stage,
using a high-resolution field spectroradiometer.

Olives are the main perennial Spanish crop, and soil man-
agement in olive orchards is mainly based on intensive land
tillage operations, which are quite relevant to the increase in
atmospheric CO2, desertification, erosion, and land degrada-
tion. Due to this negative environmental impact, the European
Union only subsidizes crop systems that alter the natural
soil as little as possible and protect it with cover crops.
Current methods to estimate the cover crop soil coverage
consist of sampling and ground visits to only 1% of the total
olive orchards. Remotely sensed data may offer the ability to
efficiently identify and map crops and cropping methods over
large areas [54]. To detect and map olive trees and cover crops,
suitable differences must exist in spectral reflectance between
them and bare soil. Moreover, the spectral signature of any
vegetation type is different depending on the phenological
stage in which it is obtained [55]. This analysis will help to
program the suitable wavelengths of airborne hyperspectral
sensors. In this way, hyperspectral measurements obtained us-
ing a spectroradiometer were used to discriminate four classes:
live cover crops, dead cover crops, bare soil, and olive trees.

This study was conducted in Andalusia, southern Spain, in a
location named “Cortijo del Rey” in early spring [Cortijo(Sp)]
and early summer [Cortijo(Su)]. Forty spectral signatures of
live cover crop, 20 of dead cover crops, 10 of olive trees, and
10 of bare soil were taken in spring in 2007. The same number
of samples was acquired in the summer but only 10 samples of
live cover crop could be obtained. The hyperspectral range was
between 400 and 900 nm. However, preliminary experiments
suggested that using only seven wavelengths was enough to
characterize the original spectral curves and so the datasets
include only these wavelengths.

D. Comparison to SLogistic, MLogistic, and RBFEP

First of all, an analysis is performed on the accuracy
of all the methods proposed (MLRBF, SLRBF, MLIRBF,
and SLIRBF) when compared to the SLogistic, MLogistic,
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TABLE II

COMPARISON OF THE PROPOSED METHODS TO SLOGISTIC, MLOGISTIC, AND RBFEP: MEAN AND SD OF THE ACCURACY RESULTS (CG ) FROM 100

EXECUTIONS OF A 10-FOLD CROSS VALIDATION, MEAN ACCURACY (CG ), AND MEAN RANKING (R)

Method (CG(%))

SLogistic MLogistic RBFEP MLRBF SLRBF MLIRBF SLIRBF
Dataset Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD

Hepatitis 84.70 ± 8.56 86.44 ± 7.46 82.43 ± 6.76 82.08 ± 7.48 81.53 ± 7.31 85.15 ± 6.78 85.38 ± 6.60
Glass(G2) 76.04 ± 9.97 70.52 ± 9.76 78.28 ± 9.49 77.36 ± 9.48 77.28 ± 10.09 77.12 ± 9.26 78.34 ± 9.63

Sonar 74.93 ± 9.74 74.97 ± 9.12 80.21 ± 8.08 80.55 ± 8.31 80.46 ± 8.48 80.88 ± 6.49 80.90 ± 8.23
Heart-c 83.29 ± 6.33 84.10 ± 6.59 84.55 ± 4.07 83.72 ± 5.23 83.88 ± 3.96 84.01 ± 4.46 84.70 ± 4.51

Ionosphere 87.78 ± 5.08 87.78 ± 5.39 94.26 ± 3.87 93.92 ± 4.20 93.86 ± 4.09 93.61 ± 4.15 93.95 ± 4.11
Vote 95.98 ± 2.70 95.95 ± 2.57 95.77 ± 2.73 95.70 ± 2.73 95.77 ± 2.73 96.09 ± 2.40 96.23 ± 2.74

Australian 85.62 ± 4.05 85.42 ± 3.90 85.74 ± 4.32 85.64 ± 4.23 85.55 ± 4.20 85.45 ± 4.46 85.84 ± 3.56
Breast-w 96.24 ± 2.00 96.52 ± 1.99 96.01 ± 2.40 95.90 ± 2.45 95.96 ± 2.51 96.26 ± 2.51 96.61 ± 2.48
German 75.07 ± 3.77 75.79 ± 3.63 75.40 ± 3.29 74.72 ± 3.25 74.88 ± 3.25 74.77 ± 3.91 75.15 ± 3.73
Post-Op. 70.89 ± 5.86 70.11 ± 6.45 70.22 ± 7.22 70.44 ± 7.27 69.78 ± 7.25 70.56 ± 6.39 71.00 ± 5.67

Iris 96.00 ± 5.36 96.53 ± 4.69 95.93 ± 5.83 96.20 ± 5.21 95.60 ± 5.62 96.67 ± 4.59 96.80 ± 4.69
Newthyroid 97.36 ± 3.23 96.57 ± 3.45 96.49 ± 2.96 95.44 ± 7.50 96.36 ± 3.14 95.39 ± 7.46 96.59 ± 3.11

Balance 87.12 ± 3.02 88.53 ± 2.75 91.15 ± 2.09 93.89 ± 3.04 93.93 ± 3.11 94.13 ± 2.42 94.24 ± 2.52
Cortijo(Sp) 95.63 ± 7.41 95.63 ± 7.19 85.50 ± 4.94 90.13 ± 10.10 90.63 ± 9.30 97.50 ± 5.89 96.38 ± 6.23
Cortijo(Su) 91.40 ± 11.81 94.00 ± 10.44 92.20 ± 11.68 93.40 ± 11.03 92.80 ± 10.06 93.60 ± 10.20 93.00 ± 9.59

Lymph. 83.85 ± 10.34 84.97 ± 8.68 82.13 ± 10.32 81.04 ± 10.33 81.44 ± 10.23 82.70 ± 8.42 84.19 ± 10.96
Anneal 99.18 ± 1.16 99.34 ± 0.87 94.56 ± 2.28 96.77 ± 4.48 97.51 ± 1.76 98.73 ± 4.90 99.38 ± 0.84
Glass 66.26 ± 8.54 63.88 ± 8.90 68.42 ± 9.44 68.72 ± 8.68 68.74 ± 10.32 68.87 ± 9.72 70.02 ± 8.64
Zoo 94.75 ± 6.77 96.23 ± 5.94 94.86 ± 6.39 95.25 ± 6.39 94.15 ± 7.37 95.65 ± 6.04 95.35 ± 5.35

Audiology 85.11 ± 6.86 81.90 ± 7.45 29.58 ± 8.06 41.95 ± 14.56 42.18 ± 14.16 81.81 ± 9.88 84.53 ± 8.63

CG(%) 86.36 86.26 83.68 84.64 84.61 87.45 87.93
R 4.50 3.70 4.58 4.95 5.18 3.45 1.65

The best result is in boldface and the second best result in italics.

and RBFEP methods. This is essential because the proposed
methods are based on different combinations of the RBFs of
an RBFNN obtained using the RBFEP method and both Sim-
pleLogistic and MultiLogistic logistic regression algorithms.
Consequently, the different proposals must achieve a better
performance than all these methods in order to justify the
additional complexity of these combinations.

In Table II, the mean and the SD of the correct classification
rate in the generalization set (CG) is shown for each dataset
and a total of 100 executions. Based on the mean CG, the
ranking of each method in each dataset (R = 1 for the best
performing method and R = 7 for the worst one) is obtained,
and the mean accuracy (CG) and mean ranking (R) are also
included in Table II. From the analysis of the results, it can
be concluded, from a purely descriptive point of view, that
the SLIRBF method obtains the best result for 11 datasets,
the MLogistic method yields the highest performance for 5
datasets, SLogistic for 2 datasets and, RBFEP and MLIRBF
only for 1 dataset. Furthermore, the SLIRBF method obtains
the best mean ranking (R = 1.65), followed by the MLIRBF
method (R = 3.45), and reports the highest mean accuracy
(CG = 87.93%), followed also by MLIRBF (CG = 87.45%).
It can be observed that SLRBF never yields better results
than SLIRBF. When comparing the MLIRBF and MLRBF
methods, there are four cases where MLRBF outperforms
MLIRBF [Glass(G2), Ionosphere, Australian, and Newthy-
roid], although the differences are really low and probably
due to the stochastic nature of the methods (it is important to
observe the SD of the results).

To quantify whether a statistical difference exists between
any of these algorithms, a procedure for comparing multi-
ple classifiers over multiple datasets is employed [56]. This
procedure begins with the Friedman test [57], using the CG

ranking of the best models as the test variable. This test is
a nonparametric equivalent to the repeated-measures ANOVA
test, and in our case it is applied since a previous evaluation
of the CG values results in rejecting the normality and the
equality of variance hypothesis. Given the ranks of the K
classifiers averaged over the D datasets, Rk , k = 1, . . . , K ,
and under the null hypothesis that all classifiers are equivalent,
the Friedman statistic is

χ2
F = 12D

K (K + 1)

[
∑

k

R2
k − K (K + 1)2

4

]

which is χ2-distributed with (K −1) degrees of freedom. This
statistic has been shown to be overly conservative, and some
have recommended the use of a more sensitive one

FF = (D − 1)χ2
F

D(K − 1) − χ2
F

which is F distributed with (K − 1) and (K − 1)(D − 1)
degrees of freedom. Applying this test to the average ranks at
the bottom of Table II, the test shows that the effect of the
method used for classification is statistically significant at a
significance level of 5%, because the confidence interval is
C0 = (0, χ2

F(α=0.05) = 18.55) and χ2
F = 37.62 /∈ C0, and

also, for the more sensitive statistic, the confidence interval is
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TABLE III

CRITICAL DIFFERENCE (CD) VALUES AND DIFFERENCES IN RANKINGS OF THE NEMENYI TEST

Nemenyi test

Method(j)
Method(i) SLogistic MLogistic RBFEP MLRBF SLRBF MLIRBF SLIRBF

SLogistic − 0.80 0.08 0.45 0.68 1.05 2.85+•
MLogistic − − 0.88 1.25 1.48 0.25 2.05+•
RBFEP − − − 0.37 0.60 1.13 2.93+•
MLRBF − − − − 0.23 1.50 3.30+•
SLRBF − − − − − 1.73 3.53+•
MLIRBF − − − − − − 1.80

C D(α=0.05) = 2.01 C D(α=0.1) = 1.84

•: Statistically significant differences with α = 0.05.
+: The difference is in favor of Method(j).

CD
(α 	 0.05)

CD
(α 	 0.1)

7

SLRBF

MLRBF

RBFEP
SLogistic

SLIRBF

MLRBF
MLogistic

RBFN

Ada100(RBFN)

RVKDE
SLIPU

SLIRBF

SVM
SMLR

6 5 4 3 2 1

7 6 5 4 3 2 1

Fig. 4. Nemenyi CD diagrams comparing the different methods considered in this paper.

C0 = (0, F(α = 0.05) = 2.18) and the F-distribution statistical
value is FF = 8.68 /∈ C0. Consequently, we reject the null
hypothesis stating that all algorithms perform equally well
in mean ranking and a post hoc test is warranted for further
investigation.

On the basis of this rejection, the Nemenyi post hoc test
is used to compare all classifiers to each other. This test
considers that the performance of any two classifiers is deemed
significantly different if their mean ranks differ by at least
the CD

C D = q

√
K (K + 1)

6D
(9)

where q is derived from the studentized range statistic divided
by

√
2 (the corresponding table for this statistic is available

in [56]). The differences in rankings between the different
algorithms and the results of the Nemenyi test for α = 0.1 and
α = 0.05 can be seen in Table III, using the corresponding
critical values (and also in the Nemenyi CD diagram of
Fig. 4). By using this test, it can be seen that the SLIRBF
method significantly outperforms all the other methods except

MLIRBF for α = 0.05, although the differences between
MLIRBF and SLIRBF (1.80) are very close to the differences
needed for assessing statistically significance at α = 0.1
[C D(α=0.1) = 1.84]. Consequently, for this subset of datasets,
SLIRBF obtains a significantly higher performance than the
two methods from which it is derived, i.e., SLogistic and
RBFEP, which justifies the proposal.

E. Comparison to Other Related Probabilistic Classifiers

This section presents a comparison of the best performing
method of those proposed (SLIRBF). As previously stated,
very competitive probabilistic classifiers have been selected
along with others that share some characteristics with the
different proposals.

Comparison is again performed using the correct classifica-
tion rate or accuracy in the generalization set (CG ), the mean
accuracy (CG ), and the mean ranking (R), and the results are
included in Table IV. A descriptive analysis of the results leads
to the following remarks: the SLIRBF method obtains the best
results for 9 out of the 20 datasets, the second best results for
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TABLE IV

COMPARISON OF THE PROPOSED METHOD TO OTHER PROBABILISTIC METHODS: MEAN AND SD OF THE ACCURACY RESULTS (CG) FROM 100

EXECUTIONS, MEAN ACCURACY (CG), AND MEAN RANKING (R)

Method (CG(%))

RBFN Ada100(RBFN) SVM RVKDE SMLR SLIPU SLIRBF
Dataset Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD

Hepatitis 82.01 ± 9.71 81.22 ± 8.41 82.71 ± 8.87 83.22 ± 7.53 85.80 ± 9.13 84.72 ± 6.49 85.38 ± 6.60
Glass(G2) 76.03 ± 11.03 79.85 ± 8.40 80.05 ± 8.97 79.43 ± 9.02 76.31 ± 10.34 73.51 ± 9.11 78.34 ± 9.63

Sonar 71.99 ± 10.44 82.88 ± 8.23 82.27 ± 9.52 83.25 ± 7.64 77.64 ± 8.40 75.71 ± 9.87 80.90 ± 8.23
Heart-c 81.92 ± 7.61 80.06 ± 6.97 83.58 ± 6.19 83.67 ± 6.50 83.48 ± 7.00 83.34 ± 4.38 84.70 ± 4.51

Ionosphere 91.23 ± 5.47 93.71 ± 4.13 93.77 ± 3.60 93.62 ± 3.49 95.27 ± 3.53 92.53 ± 4.35 93.95 ± 4.11
Vote 94.55 ± 3.56 94.97 ± 3.24 95.75 ± 2.81 94.51 ± 3.42 95.56 ± 3.11 95.42 ± 2.41 96.23 ± 2.74

Australian 75.54 ± 5.37 81.97 ± 4.76 86.32 ± 4.40 85.71 ± 3.66 85.68 ± 4.24 85.35 ± 3.80 85.84 ± 3.56
Breast-w 96.14 ± 2.01 95.87 ± 2.08 96.44 ± 2.14 96.42 ± 1.94 96.34 ± 1.89 96.47 ± 2.15 96.61 ± 2.48
German 70.28 ± 3.58 71.95 ± 4.20 75.12 ± 4.27 72.55 ± 3.67 75.81 ± 3.77 74.42 ± 3.81 75.15 ± 3.73
Post-Op. 66.78 ± 10.42 58.22 ± 12.35 70.56 ± 5.99 67.56 ± 9.30 64.22 ± 10.43 69.89 ± 6.94 71.00 ± 5.67

Iris 95.80 ± 4.80 94.73 ± 5.55 95.80 ± 4.70 95.67 ± 4.58 95.53 ± 5.19 96.67 ± 4.29 96.80 ± 4.69
Newthyroid 96.79 ± 3.46 96.17 ± 3.75 95.95 ± 3.79 94.97 ± 4.44 96.29 ± 3.72 97.02 ± 2.51 96.59 ± 3.11

Balance 85.85 ± 3.83 86.95 ± 3.04 99.92 ± 0.48 89.71 ± 1.84 96.96 ± 2.44 97.70 ± 1.97 94.24 ± 2.52
Cortijo(Sp) 82.38 ± 11.53 91.25 ± 9.97 90.13 ± 4.82 94.63 ± 6.94 85.63 ± 6.97 96.25 ± 5.76 96.38 ± 6.23
Cortijo(Su) 88.00 ± 12.06 89.00 ± 12.51 92.20 ± 9.94 92.60 ± 10.50 90.40 ± 12.22 92.80 ± 10.06 93.00 ± 9.59

Lymph. 76.27 ± 9.68 81.90 ± 9.93 83.02 ± 8.77 81.61 ± 8.65 84.96 ± 8.56 79.77 ± 10.16 84.19 ± 10.96
Anneal 90.75 ± 2.18 97.44 ± 2.28 98.42 ± 0.87 98.52 ± 1.40 98.42 ± 1.30 99.00 ± 1.27 99.38 ± 0.84
Glass 65.60 ± 10.80 71.10 ± 9.43 68.12 ± 9.93 69.84 ± 9.25 68.65 ± 8.17 67.33 ± 10.87 70.02 ± 8.64
Zoo 94.05 ± 6.62 95.05 ± 6.37 93.98 ± 6.68 97.01 ± 5.01 96.41 ± 5.59 93.84 ± 6.46 95.35 ± 5.35

Audiology 71.97 ± 8.53 76.60 ± 7.67 80.32 ± 7.00 67.49 ± 8.33 77.37 ± 8.98 83.74 ± 9.17 84.53 ± 8.63
CG(%) 82.70 85.04 87.22 86.10 86.34 86.77 87.93

R 6.08 5.05 3.35 4.00 3.73 3.85 1.95

The best result is in boldface and the second best result in italics.

TABLE V

CD VALUES AND DIFFERENCES IN RANKINGS OF THE NEMENYI TEST

Nemenyi test

Method(j)
Method(i) RBFN Ada100(RBFN) SVM RVKDE SMLR SLIPU SLIRBF

RBFN − 1.03 2.73+• 2.08+• 2.35+• 2.23+• 4.13+•
Ada100(RBFN) − − 1.70 1.05 1.32 1.20 3.10+•
SVM − − − 0.65 0.38 0.50 1.40
RVKDE − − − − 0.27 0.15 2.05+•
SMLR − − − − − 0.12 1.78
SLIPU − − − − − − 1.90+◦

C D(α=0.05) = 2.01, C D(α=0.1) = 1.84

•, ◦: Statistically significant differences with α = 0.05 (•) and α = 0.1 (◦).
+: The difference is in favor of Method(j).

other 6 datasets, and the best mean accuracy (CG = 87.93%);
SVM obtains the best results for 3 datasets, the second best
results for 2 datasets, and the second best mean accuracy
(CG = 87.22%), and SMLR achieves the best performance
for 4 datasets and the second best performance for 1 dataset,
resulting in the fourth best mean accuracy (CG = 86.34%).
These three methods result in the best mean rankings, the best
one being obtained by SLIRBF (R = 1.95), followed by SVM
(R = 3.35) and SMLR (R = 3.73).

It is necessary again to ascertain whether there are signif-
icant differences in the mean ranking of CG , so a procedure
similar to that used in the previous subsection has been
applied. The nonparametric Friedman test shows that the effect
of the method used for classification is statistically significant

at a significance level of 5%, as the confidence interval is
the same C0 = (0, χ2

F(α=0.05) = 18.55) and χ2
F = 43.42 /∈

C0, and also, for the more sensitive statistic, the confidence
interval is C0 = (0, FF(α=0.05) = 2.18) and the F-distribution
statistical value is FF = 10.77 /∈ C0. Consequently, we reject
the null hypothesis stating that all algorithms of this second
comparison perform equally in mean ranking.

On the basis of this rejection, the Nemenyi post hoc test is
used to compare all classifiers to each other. The differences
in rankings between the different algorithms and the results
of the Nemenyi test for α = 0.1 and α = 0.05 can be seen
in Table V, using the corresponding critical values (and also
in the Nemenyi CD diagram of Fig. 4). This test concludes
that, when considering this subset of datasets, the SLIRBF



260 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 22, NO. 2, FEBRUARY 2011

TABLE VI

BEST SLIRBF MODELS FOR CORTIJO(SP) AND CORTIJO(SU)

Dataset SLIRBF predictor functions

Cortijo(Sp) f1(x,θ1) = −18.83 − 17.64λ∗
575 − 1.80λ∗

675 + 9.96λ∗
700 + 19.43B1(x, w1)

f2(x,θ2) = −16.53 − 10.58λ∗
575 + 4.10λ∗

675 + 9.02λ∗
700 − 4.77λ∗

725 + 4.71B1(x, w1) + 21.68B3(x, w3)

f3(x,θ3) = 7.44 − 4.83λ∗
575 + 9.02λ∗

700 + 4.71B1(x, w1) − 30.17B2(x, w2)

B1(x, w1) = exp(−0.5 ∗ (((λ∗
725 − 1.18)2)0.5/(1.28)2))

B2(x, w2) = exp(−0.5 ∗ (((λ∗
625 + 0.67)2)0.5/(0.93)2))

B3(x, w3) = exp(−0.5 ∗ (((λ∗
625 + 0.39)2 + (λ∗

650 + 0.21)2)0.5/(1.13)2))

Cortijo(Su) f1(x,θ1) = 0.68 + 1.53λ∗
675 + 1.28λ∗

725
f2(x,θ2) = −1.19 + 1.53λ∗

675 + 5.57B1(x, w1)

f3(x,θ3) = −1.44 + 1.53λ∗
675 + 4.30B2(x, w2)

B1(x, w1) = exp(−0.5 ∗ (((λ∗
600 + 0.72)2)0.5/(0.66)2))

B2(x, w2) = exp(−0.5 ∗ (((λ∗
575 − 1.23)2)0.5/(0.87)2))

TABLE VII

COMPUTATION TIME REQUIRED BY THE DIFFERENT ALGORITHMS: MEAN OF THE TIME IN SECONDS (t ) USED FOR TRAINING EACH CLASSIFIER FROM

THE 100 EXECUTIONS CONSIDERED

Method (t (s))
Ada100

Dataset SLogistic MLogistic RBFEP MLRBF SLRBF MLIRBF RBFN (RBFN) SVM RVKDE SMLR SLIPU SLIRBF

Hepatitis 6.37 1.86 9.46 10.45 14.99 10.15 0.03 1.20 3.74 2.43 0.86 12.93 18.46
Glass(G2) 4.70 1.09 250.92 252.38 261.83 251.65 0.02 0.26 3.96 2.56 1.32 153.78 263.24

Sonar 18.81 9.97 1589.80 1591.44 1600.56 1592.61 0.08 4.29 8.27 3.24 2.90 1276.22 1615.42
Heart-c 14.95 5.13 55.21 56.51 64.96 56.88 0.05 1.72 10.46 4.73 7.35 33.80 74.37

Ionosphere 23.35 7.87 639.40 641.14 656.30 641.90 0.08 2.96 11.54 5.54 8.78 488.29 672.99
Vote 16.15 5.00 47.06 48.51 60.55 48.80 0.07 1.86 11.16 6.64 17.98 37.68 67.99

Australian 57.52 28.16 6697.97 6700.91 6739.42 6705.89 0.20 4.79 50.22 11.11 22.92 2210.11 6808.68
Breast-w 21.34 5.66 72.04 74.56 101.37 74.78 0.10 1.77 11.38 10.02 17.59 54.90 112.70
German 115.67 46.15 2685.01 2688.47 2732.86 2698.39 0.58 13.57 150.21 16.58 48.39 459.50 2854.98
Post-Op. 5.35 2.19 7.78 8.63 12.39 8.53 0.03 0.34 3.16 1.26 0.51 25.58 14.17

Iris 6.32 1.49 8.79 10.09 16.08 9.56 0.03 1.38 2.74 2.07 6.20 12.88 16.24
Newthyroid 9.60 2.40 150.62 152.56 163.52 152.12 0.08 3.37 2.64 2.94 8.47 65.48 165.00

Balance 27.41 6.08 820.02 824.29 892.93 824.37 0.09 0.44 21.36 8.52 102.39 335.17 908.27
Cortijo(Sp) 5.47 1.60 7.53 8.59 13.39 8.30 0.04 1.24 2.05 1.46 0.73 12.15 14.16
Cortijo(Su) 3.43 0.96 6.19 7.34 11.26 6.79 0.03 1.20 1.78 1.04 0.64 8.75 11.01

Lymph. 18.14 18.22 533.59 535.77 545.34 540.28 0.08 3.44 5.16 2.06 5.43 171.27 556.64
Anneal 336.00 40.99 2497.73 2512.54 2612.08 2558.48 34.67 34.67 88.24 12.90 122.27 1110.34 2962.74
Glass 20.84 10.94 1234.93 1239.46 1261.74 1241.14 1.25 3.91 5.51 3.25 6.82 560.21 1270.72
Zoo 12.77 12.63 410.52 414.12 423.29 418.88 0.06 3.11 3.18 1.26 2.64 121.04 428.00

Audiology 346.09 4579.99 570.72 595.78 655.62 8193.35 47.07 144.68 24.07 3.11 17.03 937.25 1144.91

method significantly outperforms RBFN, Ada100(RBFN), and
RVKDE for α = 0.05 and significantly outperforms SLIPU for
α = 0.1. Although the mean ranking of SLIRBF is better than
that of SMLR and SVM, these differences are not significant.
However, it can be observed in Table V that the differences in
ranking obtained by SLIRBF take values near 4 for RBFN,
while those obtained by SMLR and SVM are not higher
than 2.73.

Therefore, we can conclude that the results obtained by
SLIRBF make it a competitive method when compared to the
probabilistic classifiers previously mentioned.

F. Analysis of the Best SLIRBF Models Obtained
for the Real Agronomical Problems

One of the major advantages of the SLIRBF model is
the reduced number of features and RBFs included in the

final model. This can result in a better interpretability of the
model, which is especially important when dealing with real
problems. In this way, Table VI includes the best predictor
functions of the SLIRBF models obtained for the Cortijo(Sp)
and Cortijo(Su) real problems. As discussed in Section V-C,
the datasets include seven wavelengths as input variables
and the spectral signatures are to be classified into four
classes (live cover crop, dead cover crop, olive tree, and
bare soil). From these predictor functions, the probability
that each pattern x having to belong to each class can be
easily derived by using (2). It can be observed how these
models present an optimized structure from different points
of view, each of the RBFs uses a subset of the initial
covariates (through the use of the RBFEP algorithm) and every
predictor function does not include every RBF or initial co-
variate (through the use of the SLogistic maximum likelihood
algorithm).
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G. Analysis of the Computation Time
of the Different Algorithms

Table VII includes the computation time required by the
different algorithms, measured as the mean number of seconds
from the 100 executions considered.

The Java platform we used was JDK 1.6.0, under an
Ubuntu Server 64 bits environment. The hardware used in
the experiments is a computer cluster with eight 2.00-GHz
Intel Xeon E5405 CPUs (x86_64 architecture) and 8 GB of
RAM per each CPU. It is important to remark that software
implementations can affect these computation times.

1) “libsvm” (used for SVM experimentation) is written in
C and includes several efficiency improvements.

2) WEKA, JCLEC, SMLR, and the developed RBFEP
package are written in Java, making an intensive use
of object-oriented programming. Sometimes, this can
compromise the computational efficiency.

Regarding the running times of the different algorithms, the
largest computer time in the LIRBF methods is employed to
obtain the optimized RBFs because of the use of the RBFEP
algorithm. However, from the analysis of the results, the appli-
cation of the second and third steps of the proposed method-
ology (see Section V-D) results in a significant improvement.
From the analysis of the results in Table VII, it is clear that all
those methods involving evolutionary optimization demand a
considerably higher computational cost. These differences are
not so notable for Hepatitis, Post-Op., Iris, Cortijo(Sp), and
Cortijo(Su), i.e., those datasets with a fewer instances (see
Table I). However, our LIRBF models clearly benefit from
the optimized structure learnt by the EA, which leads both to
better generalization accuracy and better interpretability, the
latter being especially useful for experts to obtain interesting
conclusions with respect to the problem under consideration.
This interpretability was analyzed in Section V-F.

VI. CONCLUSION

This paper combined three powerful techniques used in
machine learning research: multilogistic regression, EAs, and
RBFNNs. The approach carries out an adequate combination
of the three elements to solve multiclass problems and follows
the proposal of Hastie, Tibshirani, and Friedman of general-
izing the linear logistic model using additive models of basis
functions [2], [51]. Specifically, this new approach consists of
a multilogistic regression model built on the combination of
linear covariates and Gaussian RBFs for the predictor function.
The process for obtaining the coefficients was carried out in
three steps: 1) an EP algorithm aimed to produce a reduced
number of RBF transformations with the simplest structure
possible (i.e., trying to select the most important input vari-
ables for the estimation of these RBFs); 2) a transformation of
the input space by adding the nonlinear transformations of the
input variables given by the RBFs of the best individual in the
final generation; and 3) a maximum likelihood optimization
method. In this final step, two different multilogistic regression
algorithms were applied, one that considered all initial and
RBF covariates (MLIRBF) and another that incrementally

constructed the model and applied cross validation, resulting
in an automatically covariate selection (SLIRBF).

From the analysis of the results obtained, several conclu-
sions can be drawn. First of all, the covariate selection process
incorporated in the SLogistic algorithm of the SLIRBF and
SLRBF methods is necessary in some datasets to avoid over-
fitting. Then, the results reported by the MLIRBF and SLIRBF
methods (built on initial and RBF covariates) are better for
almost all datasets than those reported by their equivalent
standard multilogistic regression methods, i.e., MLogistic and
SLogistic (built only on the initial covariates). Finally, SLIRBF
is a competitive method, obtaining high accuracy values. A
measure of statistical significance is used, which indicates that
SLIRBF reaches the state of the art.
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