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Abstract This paper introduces Lags COevolving with

Rbfns (L-Co-R), a coevolutionary method developed to

face time-series forecasting problems. L-Co-R simulta-

neously evolves the model that provides the forecasted

values and the set of time lags the model must use in the

prediction process. Coevolution takes place by means of

two populations that evolve at the same time, cooperating

between them; the first population is composed of radial

basis function neural networks; the second one contains the

individuals representing the sets of lags. Thus, the final

solution provided by the method comprises both the neural

net and the set of lags that better approximate the time

series. The method has been tested across 34 different time

series datasets, and the results compared to 6 different

methods referenced in literature, and with respect to 4

different error measures. The results show that L-Co-R

outperforms the rest of methods, as the statistical analysis

carried out indicates.

Keywords Neural networks � Coevolutionary

algorithms � Time series forecasting � Significant lags

1 Introduction

Time series forecasting can be described as the task of

predicting values of the series based on past and present

values through the time line in order to achieve the infor-

mation of the underlying model. Thus, time series represent

chronological sequences of observed data, and they are

present in many activities in different fields like Engi-

neering, Biology, Economy, or Social Sciences, among

many others.

Techniques developed to face with time series forecasting

can be grouped in descriptive traditional technologies, linear

and nonlinear modern models, and technologies arisen inside

the area of soft computing.

Among the available modern methods (see Crone et al.

2011 for an update review), the model described by Box

and Jenkins (1976), ARIMA, is probably the most widely

used in time series forecasting. This method forecasts

future time series data with a combination of autoregres-

sive and moving average data. The autoregressive part

relates the future value to past and present values in a linear

fashion. The moving average component relates the future

value to the errors of previous forecasts. The disadvantage

of the method is that it gives simplistic linear models, being

unable to find subtle patterns in the time series data.

Regarding the soft computing area, time series fore-

casting has been tackled by means of diverse techniques,

such as fuzzy logic, expert systems, evolutionary algo-

rithms (EAs) and, especially, artificial neural networks

(ANNs). Many successful applications have shown that

ANNs are a suitable alternative tool for both forecasting

researchers and practitioners, due to their learning and

generalization capabilities.

Independently of the model being used, one of the main

problems that emerge working with time series is the
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choice of the time periods (or lags) that must be used in

order to forecast values. This way, the own selection of the

input variables to build the model turns itself into a prob-

lem that can be faced using data mining techniques.

In this work, the combined use of radial basis function

networks (RBFNs) and EAs is proposed in order to find

both: (a) the neural network that models the time series,

and (b) the set of significant lags the net needs to forecast

future values. This kind of learning processes in which two

complementary and dependent objectives exist is suited to

be tackled by coevolutionary algorithms (Paredis 1995).

Therefore, we propose Lags COevolving with Rbfns

(L-Co-R), a coevolutionary algorithm able to jointly solve

the two problems.

L-Co-R is a coevolutionary method developed to find an

optimum minimization of the error obtained for time series

forecasting. It evolves two populations in which any

member of one of the population can cooperate with

individuals from the other one in order to progressively

generate better solutions. So, the first population evolves

sets of significant lags for the time series that are used to

forecast future values. The second population evolves a set

of RBFNs obtaining a suitable design for time series pre-

diction. The last implies the establishment of the archi-

tecture and parameters associated with the nets: number of

layers, connection between neurons, optimum set of

weights, and radii and centers for neurons.

The rest of the paper is organized as follows: Sect. 2

introduces some preliminary topics related to this research;

Sect. 3 describes the method L-Co-R; Sect. 4 presents the

experimentation carried out and the results obtained, and

finally Sect. 5 presents some conclusions of the work.

2 Preliminaries

2.1 Time series

A time series is a set of observations from a variable along

the time in regular intervals (every day, every month, every

year, and so on) (Pena 2005). Thus, time series forecasting

consists of predicting future values based on present and

past values, and external factors, when available. The main

objective is to analyze the evolution of the variable taking

into account the past behavior, and predict next values with

accurate forecasting. Furthermore, forecasting can be

divided into short-term, medium-term, and long-term.

Generally, forecasting is trended to short-term prediction

such as one-step ahead prediction, since longer period

prediction (medium-term or long-term) is more difficult,

and sometimes may not be reliable because of the error

propagation (Chatterjee and Siarry 2006).

To determine the accuracy of the forecast method

applied to time series data, many measures have been pro-

posed. Most textbooks recommended the use of the Mean

Absolute Percentage Error (MAPE) (Bowerman et al.

2004) and it was the primary measure in the M-competition

(Makridakis et al. 1982). Other works recommended other

measures such as Geometric Mean Relative Absolute Error

(GMRAE), Median Relative Absolute Error (MdRAE), and

Median Absolute Percentage Error (MdAPE) (Armstrong

and Collopy 1992; Fildes 1992). Later, the MdRAE,

sMAPE (Symmetric Mean Absolute Percentage Error), and

sMdAPE (Symmetric Median Absolute Percentage Error)

were proposed (Makridakis and Hibon 2000).

Nevertheless, Hyndman and Koehler in their work

(Hyndman and Koehler 2006) determined that all measures

mentioned before were not generally applicable since they

can be infinite or undefined and can produce misleading

results. Therefore, they proposed a new measure suitable

for all situations: the Mean Absolute Scaled Error (MASE),

which is less sensitive to outliers, less variable on small

samples, and more easily interpreted.

In Gooijer and Hyndman (2006) and Hyndman and

Koehler (2006), a description of different error measures

can be found. Among all of them, in this work we use the

following:

• Mean Absolute Percentage Error (MAPE):

MAPE ¼ meanðj pt jÞ ð1Þ

• Median Absolute Percentage Error (MdAPE):

MdAPE ¼ medianðj pt jÞ ð2Þ

• Symmetric Median Absolute Percentage Error (sMdAPE):

sMdAPE ¼ medianð200 j Yt � Ft j ðYt þ FtÞÞ ð3Þ

• Mean Absolute Scaled Error (MASE):

MASE ¼ meanðj qt jÞ ð4Þ

where Yt is the observation at time t ¼ 1; :::; n; Ft is the

forecast of Yt; et is the forecast error (i.e. et = Yt - Ft);

pt = 100et/Yt is the percentage error, and qt ¼
et

1
n�1

Pn

i¼2
jYi�Yi�1j

:

2.1.1 Statistical methods for time series forecasting

Time series forecasting has been a major field of research

in the area of statistics (Gooijer and Hyndman 2006) as

well as operational research (Fildes et al. 2008). The arri-

val of the ARIMA methods (Box and Jenkins 1976) in the

1970s established a border line between traditional and

modern methods. These latest 40 years have seen the rapid

growth of many new methods intended to face the tasks of
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modeling and/or forecasting time series by means of linear

and nonlinear models.

Linear methods have been widely used in order to model

time series. Exponential smoothing methods (Brown 1959;

Winters 1960) were the standard in the 1950s and 1960s.

They provide a useful classification of trend and seasonal

patterns depending on whether they could be modeled in an

additive or multiplicative way. The best-known methods

are simple exponential smoothing (SES), Holt’s linear

methods, and some variations of the Holt-Winter’s

methods.

Exponential smoothing methods received a boost thanks

to the work of Gardner (1985) and Snyder (1985). A useful

variation of the original exponential smoothing methods is

SES with drift (Hyndman and Billah 2003), which has been

proved to be equivalent to Theta method. Theta method

(Assimakopoulos and Nikolopoulos 2000) performed

extremely well in the M3-competition, although why its

particular choice of model and parameters was so good

could not be precisely established (Gooijer and Hyndman

2006).

ARIMA also belongs to the class of linear methods.

ARIMA methods integrate autoregressive (AR) and mov-

ing average (MA) models in a three-stage iterative cycle

consisting of: identification of the time series, estimation of

the parameters of the model, and verification of the model.

The need for an expert’s judgement in order to identify and

validate the model is considered the main drawback of this

method. For this reason, many techniques and methods

have been developed in order to add mathematical rigor to

the search process. Theoretically all of them lead to

equivalent models, but real application on finite sample

data show that there exist large differences in the values

provided by these methods for the models’ parameters, and

these can lead to large differences in the forecasted values.

State space models (Snyder 1985), as well as dynamic

linear models (Harrison and Stevens 1976) and structural

models (Harvey 1984), have been used since the 1980s by

statisticians for time series forecasting. These methods

provide a unified framework in which any linear time series

model can be written, and in fact, they bear many simi-

larities with exponential smoothing methods. Fildes (1983)

concluded that the additional complexity added by state

spaces did not lead to better forecasting performance, when

comparing these methods with simpler ones, as simpler

exponential smoothing.

In the early 1980s it became clear that linear time series

forecasting was insufficient in many real applications.

Nevertheless, nowadays, the development of nonlinear

time series forecasting is just starting, at least compared

with linear forecasting. Clements et al. (2004) pointed out

current nonlinear method’s main problems: they used to

develop very complex models; they do not perform in a

robust way; and, worst of all, they are difficult to use.

Gooijer and Hyndman (2006) also concludes that future

research on nonlinear models should include, among oth-

ers, the search for easy to use software.

Nonlinear models include regime-switching models, an

these include the wide variety of existing threshold auto-

regressive (TAR) models (Tong 1978). TAR models are

built using a linear autoregressive model in which param-

eters change according to the value of a given observable

variable. Some of the currently available, most used TAR

models are self-exciting (SETAR) models (Tong 1983), in

which the threshold variable is a lagged value of the time

series; smooth transition (STAR) models (Chan and Tong

1986), that define two different regimes and incorporate a

smooth transition between them; and continuous-time

(CTAR) models (Brockwell and Hyndman 1992), in which

the observable variable is time itself. There exist contra-

dictory papers related to the power of TAR models to

forecast time series, as shown by Sarantis (2001) and

Bradley and Jansen (2004).

2.1.2 Soft computing methods for time series forecasting

Among other soft computing methods, ANNs have been

recognized as an important tool for forecasting. Zhang

et al. (1998) presented a review of the status in applications

of neural networks for forecasting. The popularity of ANNs

is derived from the fact they are generalized nonlinear

forecasting models. Forecasting has been dominated by

linear statistical methods for several decades, as mentioned

before, and linear models have many advantages with

respect to implementation and interpretation; nevertheless,

they have serious limitations because they cannot capture

nonlinear associations in the data which are common in

many complex real-world problems (Granger and Tersvirta

1993).

The work by Tang et al. (1991) concluded that neural

networks not only could provide better long-term fore-

casting but also did a better job than ARIMA models with

short series of input data. Furthermore, contrary to the

traditional linear and nonlinear time series models, ANNs

are nonlinear data-driven approaches with more flexibility

and effectiveness in modeling for forecasting (Zhang et al.

1998). Jain and Kumar (2007) determined in their work

that the ANN models were able to produce more accurate

forecasts than traditional models because they do not pre-

suppose any functional form of the model to be developed

and they do not depend on the assumptions of linearity.

There exist numerous works of different application

areas where ANNs are used to forecast. The work by

Arizmendi et al. (1993) obtained accurate predictions of

the airborne pollen concentrations using ANNs. Zhang and

Hu (1998) employed ANNs, and Rivas et al. (2004)
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RBFNs, for forecasting British pound and US dollar

exchange rates. Bezerianos et al. (1999) employed RBFNs

for the assessment and prediction of the heart rate vari-

ability. Valenzuela et al. (2008) used a combination of

ANNs and other techniques to propose a hybrid ARIMA-

ANN model; they used an expert fuzzy logic-based system

whose rules were weighted in an automatic way applied to

problems like the number of users logged on to an Internet

server each minute over 100 min, pollution, or Mackey-

Glass chaotic time series, among others.

On the other hand, time series forecasting is faced with

some other soft computing approaches. Samanta (2011) and

Zhu et al. (2011) developed methods based on cooperative

particle swarm optimization. Works like Qiu et al. (2011)

and Wang (2011) proposed fuzzy time series models for

forecasting, and Yu and Huarng (2010) applied ANNs for

training and forecasting in their fuzzy time series model.

Models such as support vector regression (Kavaklioglu

2011) and fuzzy expert system (Dash et al. 1995) were

proposed for the electricity demand forecasting, among

others.

In Sect. 2.1.3, another soft computing approaches for

lag selection process are described. Moreover, different

soft computing methods for the type of ANNs used in this

paper, that is RBFN, are revised in Sect. 2.2.

2.1.3 Lags selection

Another problem that emerges working with time series is

the correct choice of the lags considered for representing

the series.

The relationship involving time series historical data

defines a d-dimensional space where d is the minimum

dimension capable of representing such a relationship.

Takens’ (1980) theorem establishes that if d is sufficiently

large is possible to build a state space using the correct

time lags and if this space is correctly rebuilt also guar-

antees that the dynamics of this space is topologically

identical to the dynamics of the real systems state space.

Many methods can be found in the literature for the correct

definition of the variable d, that is, the correct choice of the

important time lags of the system dynamics, sometimes

called as active dimension of the dynamics generating a

time series from the observed series Tanaka et al. (2001).

For this problem an evolutionary method that performs a

search for the minimum number of dimensions, Time-delay

Added Evolutionary Forecasting (TAEF), is presented in

Ferreira et al. (2008). The methodology is inspired in Takens’

theorem and consists of an iterative hybrid model composed

of an ANN combined with a genetic algorithm (GA).

This method iterates the GA increasing the possible

number of lags to obtain a solution with a minimum fitness.

Once determined d and the lags, the ANN is tuned in a

second stage. In Lukoseviciute and Ragulskis (2010) the

evolutionary selection of lags is divided into two stages:

first, the optimal dimension of the reconstructed phase

space is determined by the false-nearest-neighbor algo-

rithm and then a near-optimal set of time lags is found with

a genetic algorithm for a fuzzy inference system.

In general, these proposals are based on the primary

dependences among the variables, do not consider any

possible induced dependences, and discard any possible

correlation that can exist among the time series parameters,

even higher order correlations. There are some methods

that carry out an automatic search for solving the problem

of finding the relevant time lags. QIEHI algorithm (de A.

Araújo 2010b), for instance, is a quantum-inspired evolu-

tionary hybrid intelligent method which is composed of an

ANN and a modified quantum-inspired evolutionary algo-

rithm to search the minimum dimension to determine the

characteristic phase for time series. The model is built in

two stages as in Ferreira et al. (2008). Another hybrid

methodology composed of a modular morphological neural

network with a quantum-inspired evolutionary algorithm

that searches for the best time lags is is described in de A.

Araújo (2010a). With the same modular morphological

neural network, the time lags are obtained by means of a

particle swarm optimizer in de A. Araújo (2010c) and by

means of a modified GA in de A. Araújo (2011).

In Garcı́a Pajares et al. (2008) a study on the selection

not only of the lags but also of the exogenous features with

classical feature selection algorithms as pre-processing

stage is performed. The authors show the utility of a feature

selection pre-processing stage for time series forecasting

with different models.

The lag selection is performed as a postprocessing stage

in Maus and Sprott (2011) with a sensitivity computation

of the output to each time lag. The initial stage trains a

single-layer, feed-forward ANN based on d time lags, with

d chosen large enough to capture the relevant dynamics of

the time series. TDSEP (Sun et al. 2006) uses a GA for the

optimal selection of time lags for a previously obtained and

diagonalized second-order correlation matrices.

As can be observed, the approaches of the literature

consider the lags selection as a pre- or post-processing or as

a part of the learning process but, instead of together, in

hybrid processes with two or three stages. On the contrary,

our goal is to address the selection of the lags which rep-

resent the series (with any type of correlation) jointly with

the design process.

2.2 Radial basis function networks

RBFNs are two-layer, fully-connected, feed-forward net-

works, in which hidden neuron activation functions are

Radial Basis Functions (RBFs), usually Gaussian
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functions. RBFs were introduced by Broomhead and Lowe

(1988), being their main applications function approxima-

tion and time-series forecasting, as well as classification or

clustering tasks.

An RBF can be characterized by a point of the input

space, c, and a radius or width, such that the RBF reaches

its optimum value (maximun/minimun) when applied to c,

and decreases/increases to its opposite optimum value

when applied to points far from c. The radius controls how

distance affects that increment or decrement. For this rea-

son, experts have used groups of RBFs to successfully

interpolate data. In this work we use the Gaussian function,

one of the most common RBFs given by Eq. 5.

Gaussian ¼ e
�z2

2r2 ð5Þ

where z represents the distance from the point evaluated to

the center, which in this case is x = 0.

On the whole, the output of an RBFN is given by Eq. 6.

sjðxkÞ ¼ k0j þ
Xp0

i¼1

kij/iðx; ci; riÞ ð6Þ

where k ¼ 1::p; j ¼ 1::n0; sj 2 R; xk 2 Rn; and /i is the

RBF assigned to hidden neuron i; k0j is a bias term; kij

represents the weight between hidden neuron i and output

neuron j; ci and ri are called, respectively, the center and

radii (or widths) of the RBF; n and n0 are the input and

output space dimensions, respectively; p0 is the number of

hidden neurons, and p is the number of patterns to which sj

is going to be applied.

The main problem in RBFNs design concerns estab-

lishing the number of hidden neurons to use and their

centers and radii. The need for automatic mechanisms to

build RBFNs is already present in Broomhead and Lowe

(1988)’s work, where they showed that one of the param-

eters that critically affects the performance of RBFNs is the

number of hidden neurons.

One of the advantages of the RBFNs is that once the

structure has been fixed, the optimal set of weights linking

hidden to output neurons can be analytically computed. For

that reason, scientists have applied data mining techniques

to the tasks of finding the optimal RBFNs that solves a

given problem. Selecting good, or even the best, parameter

setting is a very time-consuming task and could be studied

as a combinatorial problem. Thus, these type of problems

have been faced with EAs (Holland 1975). The main areas

where the EAs have been applied to RBFN design are the

following ones (Harpham et al. 2004):

• Evolving network architecture. In the RBFN design, the

determination of the network architecture implies the

obtaining of the number of hidden nodes. This problem

is usually addressed with evolutionary proposals

together with the RBFN parameters in Pittsburgh

approaches (Xue and Watton 1998; Rivas et al. 2007).

• Evolving RBFN parameters (centers, widths and

weights of the RBFs). The use of EAs to optimize the

connection weights could eliminates the possibility of

converging to a local minimum but usually this

problem is not addressed with EAs in an independent

way but with other parameters of the net (Sheta and

Jong 2001). Other approaches evolve only the basis

center and width (Dawson et al. 2000).

• Optimizing the dataset. The dimensionality of the

learning problem can be drastically reduced by

selecting an optimal subset of training data, which is

used for training the RBFN (Sergeev et al. 1998). On

the other hand, the selection of the most relevant

attributes for the RBFN design is not deeply studied in

the specialized bibliography (Fu and Wang 2003) and

it can be tackled by means of EAs (Perez-Godoy et al.

2008).

In the evolutionary design of RBFN most of the pro-

posals face the different problems by means of hybrid

algorithms:

• In a first stage, the EA optimizes the basis centers and

widths, as well as the net architecture.

• The second stage uses a supervised learning method in

order to obtain the weights.

Harpham et al. (2004) reviewed some of the best-known

methods that apply evolutionary algorithms to RBFNs

design. They concluded that, in general, methods tend to

concentrate in part of the RBFNs components when

designing RBFNs, as in Perez-Godoy et al. (2010b) and

Rivera et al. (2007). Nevertheless, there also exist methods

intended to optimize the whole RBFN, such as Rivas et al.

(2007), or other kind of ANNs as Learning Vector Quan-

tization (LVQ) nets (Merelo and Prieto 1995), or multilayer

perceptrons (Castillo et al. 2000).

The use of RBFs as activation functions for neural

networks and its application to time series forecasting were

first considered by Broomhead and Lowe (1988). After

these, new works by Carse and Fogarty (1996), and

Whitehead and Choate (1996) focused on the prediction of

time series.

In later works, Harpham and Dawson (2006) studied the

effect of different basis functions on an RBFN for time

series prediction. Moreover, Du and Zhang (2008) used

time series with an encoding scheme for training RBFNs

by GAs. Both the architecture (numbers and selections of

nodes and inputs) and the parameters (centers and widths)

of the RBFNs are represented in one chromosome and

evolved simultaneously by GAs so that the selection of

nodes and inputs can be achieved automatically.
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Neural network models have been traditionally applied

in short-term forecasting (Hippert and Taylor 2010; Lee

and Ko 2009). For instance, the work by Perez-Godoy

et al. (2010a) applied a hybrid evolutionary cooperative-

competitive algorithm for the design of RBFNs to the

short-term and even medium-term forecasting of the extra-

virgin olive oil price.

Time series prediction problems can be easily decom-

posed into two subproblems, the selection of the significant

lags and the RBFN learning. For this reason, coevolu-

tionary algorithms can be considered a good way to

simultaneously solve these problems.

2.3 Coevolutionary algorithms

Cooperative coevolution was introduced by Potter and Jong

(2000) and is a research field which has grown in an

important way during last years. The Potter’s approach

consists of identifying the natural decomposition of a

problem into subcomponents. A species represents a sub-

component of the potential solution and is assigned to a

subpopulation, then each component is evolved isolated

from the rest. The fitness of each member of each sub-

population is evaluated by forming collaborations with

individuals from other species or populations. The indi-

viduals will ultimately be judged on how well they work

together to solve the target problem. Finally, a complete

solution to the problem is assembled by combining repre-

sentative members from each of the species.

There are many possible methods for choosing repre-

sentatives with which to collaborate: random collaboration

(Wiegand et al. 2001), best collaboration (Potter and Jong

1994) (the most widely used in the methods of the litera-

ture), complete collaboration, and mixed collaboration

(Panait et al. 2003). The number of collaborators possibly

plays the most important role on the success of a cooper-

ative coevolutionary algorithm and can significantly

increase overall computation time, a problem which is

combinatorial with respect to the number of subpopula-

tions. Wiegand et al. (2001)’s work suggests that a rela-

tively conservative adjustment from one to two

collaborators will frequently yield substantial benefits.

Apart from the collaboration schema and the number of

collaborators, another important point to take into account

is the collaboration credit assignment method, i.e., the way

an individual is being set a fitness when multiple collabo-

rators are selected. There are three common methods:

maximum, average, and minimum, although it is always

significantly better using maximum method than using

minimum or average (Wiegand et al. 2001).

Cooperative coevolution has been employed for tasks

like function optimization (Au and Leung 2007), multi-

objective evolutionary optimization (Tan et al. 2006),

instance selection (Garcı́a-Pedrajas et al. 2010), and fea-

ture selection (Derrac et al. 2010), among others. Coop-

erative coevolution has also been used in order to train

ANNs, such as the cooperative coevolutive approach for

designing neural network ensembles (Garcia-Pedrajas et al.

2005) and RBFNs (Li et al. 2008).

It is possible to find coevolution applied to forecasting

tasks as in Ma and Wu (2010) where coevolution with

immune network, evolving the structure and parametres of

the neural network, is applied for predicting short-term

load of a city in eastern China. The work by Qian-Li et al.

(2008) proposes a coevolutionary recurrent neural network

for the multi-step-prediction of chaotic time series esti-

mating the proper parameters of phase space reconstruction

and optimizing the structure of recurrent neural networks

by coevolutionary strategy.

3 L-Co-R: Lags COevolving with Rbfns

This section describes the method L-Co-R: Lags COe-

volving with Rbfns. As mentioned above, an algorithm

which designs RBFNs for time series forecasting must

obtain an appropriate number of RBFs, a radius and a

center for every RBF, the weights for the whole network, a

suitable set of time lags, and in addition, it should be able

to remove the trend of the time series (Zhang and Qi 2005).

Our proposal solves the trend problem with an automatic

data pre- and post-processing, and the learning of the rest

by means of an EA. Since the main goal of the algorithm

implies building at the same time both RBFNs and sets of

significant lags that will be used to predict future values,

L-Co-R is based on a coevolutionary approach. Thus, the

main problem can be decomposed into two subproblems

which depend on each other.

For this task, L-Co-R simultaneously evolves two pop-

ulations of different individual species, in which any

member of each population can cooperate with the best

individual from the other one in every generation, in order

to generate good solutions. Therefore, the new algorithm is

composed of the following two populations:

• A set of RBFNs which evolves designing the architec-

ture of the net.

• Sets of lags that are used to forecast values of the times

series.

In both populations every individual is itself a possible

solution to the problem. In the population of lags, an

individual represents a set of significant lags, and in the

population of RBFNs, a radial basis function network.

The objective of L-Co-R is to forecast any given time

series, reducing any hand-made preprocessing step, and
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building suitable RBFNs designed with appropriate sets of

lags, for what it is optimized a quality measure.

In the following subsections it is described the general

scheme of the proposal, each process which takes part in

the coevolution, the process of collaboration between them,

and the trend removal mechanism.

3.1 General scheme

Figure 1 shows the general skeleton of L-Co-R, specifying

any of the 17 steps it is composed of.

First, the method performs a preliminary stage of pre-

processing which removes the trend of the time series (step

0). Then, the L-Co-R algorithm creates the two initial

populations (P_lags and P_RBFNs) and evaluates every

individual of each population, as it is explained in

Sects. 3.2.2 and 3.3.2, respectively (Step 1).

Once the initial populations have been created, the

coevolutionary process starts (Steps 2 and 3). First, the

population of lags selects the individuals which are going

to take part of the subpopulation (Step 4). HUX crossover

(see Sect. 3.3.2) is applied to these individuals of the

subpopulation and then, they are evaluated by choosing

the collaborators from the population of RBFNs, assigning

the result as fitness to the individual that was being eval-

uated (Steps 5, 6, and 7). Afterwards, parents from popu-

lation and children from subpopulation are joined in a

single and bigger population and they are ranked regarding

their fitness (Step 8). Finally, the worst individuals are

deleted from this population until it reaches the original

size, becoming the new parent population, and eventually

the population can be reinitialized (Step 9).

On the other hand, the population of RBFNs begins to

evolve when the population of lags has been evolved

during a pre-specified number of generations (Step 10).

Then, the individuals of the subpopulation are selected, the

operators (precisely explained in Sects. 3.2.2 and 3.3.2) are

applied, and a collaborator from population of lags is

designated in order to establish the fitness of every indi-

vidual (Steps 11 to 15).

At the end of the coevolutionary process, two models

formed by a neural network and a set of lags are obtained.

The first one is composed of the best net and its best col-

laborator, and the second one is formed by the best set of

lags and its best collaborator. Next, they are training again

and the one with the best fitness will be the final model

(Step 16). Then, the forecasted values for the data test are

obtained (Step 17), and at this point, the postprocessing

phase takes place so that the final test error can be com-

puted (Step 18).

L-Co-R has been implemented following a sequential

scheme, so the two populations take turns in evolving.

During each generation only one of the two populations is

active. Contrary to other algorithms, which at the end of the

generation the population that was evolving communicates

its best individual to the population that was waiting, in

L-Co-R, the collaborator is given only when a member of

population needs it.

3.2 Evolution of the population of RBFNs

3.2.1 Codification

The population of RBFNs uses a real codification. Every

individual is represented by a set of neurons (RBFs)

composing the network, as Fig. 2 shows. The number of

neurons is variable since it can increase or decrease during

the evolutionary process. Every neuron (a in the Fig. 2) is

defined by a center (b) and a radius (c). The center (b) is a

vector with the same dimension as the inputs. The exact

dimension of the input space is given by an individual of

the population of lags (the one chosen to evaluate the net).

3.2.2 Evolutionary process

For the first generation each network in this population is

randomly generated, considering that every individual will

have a number of neurons chosen at random which may not

exceed a maximum number previously fixed only for this

first generation. Subsequently, the number of neurons mayFig. 1 General scheme of method L-Co-R
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be growing or shrinking as the algorithm evolves. The

vector of weights is initialized to zero, the center is

determined choosing patterns from the training set at ran-

dom, and the radius is estimated calculating the half of the

average distance from centers.

The population of RBFNs incorporates evolutionary

operators specifically designed to work with the individuals

of this population. Thus, the operators have been designed

trying to cover the search space in an effective way,

maximizing the success probability.

The operators used for L-Co-R are the following:

• Selection: P_RBFNs population implements tourna-

ment selection. Therefore, a group of TournamentSize

individuals is randomly chosen from the parent popu-

lation. This group takes part in a tournament and a

winning individual is determined depending on its

fitness value. Finally, the best individual (the winner) is

inserted in the subpopulation and the process is

repeated to obtain the whole child population.

• X_fix crossover operator: it replaces a sequence of

neurons (a) in the hidden layer of a network by an equal

size sequence of neurons in the hidden layer of other

network. To do this, an individual and a number of

neurons are randomly selected. Then, the current and

random individual exchange as many neurons as the

random number indicates. This operator enables shar-

ing information between the networks without affecting

the hidden layer size.

• Mutation: there are four operators to mutate the

individuals. The choice of one of this mutation

operators is carried out randomly, giving to the deleter

operator double possibility of being selected.

– C_random: the application of this operator can

modify the point where each RBF of hidden

neurons of the net is centered. The number of

neurons affected is determined by an internal

application factor. The operator performs an explo-

ration of the solution space replacing the center of

the neuron (b) by a new random center. Each of the

components of the new center is chosen following

an uniform probability distribution in the range

[min, max]. Min and max are obtained from input

patterns.

– R_random: in the same way, this operator modifies

the radius (c) value of hidden neurons. The operator

assigns a random value to the radius following an

internal probability.

– Adder: it adds new neurons (a) to the hidden layer.

The values for the center and radius vectors of a

new neuron are randomly set, within the range for

each dimension of input space.

– Deleter: this operator does the opposite of adder

operator; it deletes neurons (a) from the hidden

layer. The exact number of neurons varies from one

net to another, since the operator is applied to each

neuron with a probability. The deleter operator has

a twofold objective. The first one is to reduce the

complexity of the network without losing their

ability to approximate the training dataset. The

second one is to prevent overtraining networks,

since a high capacity of generalization is desirable.

• Replacement: the new individuals and the parent ones

are joined in an unique population. Then, the worst

individuals are eliminated keeping the best ones until

the population reaches the original population size.

Therefore, the best individuals remain in the next

generation.

3.3 Evolution of the population of lags

3.3.1 Codification

The population of lags uses a binary codification scheme

where each gene indicates whether the specific lag in

the time series will be used to predict the values or not.

Figure 3 shows an example of an individual of this popu-

lation. The length of the chromosome is set at the beginning

Fig. 2 Example of an

individual in the population of

RBFNs

Fig. 3 Example of an individual in the population of lags
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corresponding with the specific parameter, so that it cannot

vary its size during the execution of the algorithm.

3.3.2 Evolutionary process

The set of lags is evolved by means of CHC (Eshelman

1991) algorithm. Like the population of RBFNs, for the first

generation all individuals in this population are randomly

generated, taking into account that at least one gene of the

chromosome must be set to one, since at least one input has

to be given to the net to obtain the forecasted value.

The genetic operators used are the following:

• Selection: in order to select individuals for the child

population, the individuals of the parent population are

randomly organized to form the current population.

Then, they are coupled and the crossover operator will

be applied to breed. Since the algorithm uses elitism,

the best individuals found up to the moment will remain

in the current population.

• Crossover: the HUX crossover operator is used by this

population for breeding. It needs two parents; if both

parents are not very similar, couples of points are

randomly generated and the fragment of the chromo-

some between them is exchanged, bearing in mind the

incest prevention. This application way guarantees the

two offspring are always at the maximum Hamming

distance from their parents.

• Replacement: the population follows the same process

of replacement as described previously. The new

individuals and the parent ones are joined in an unique

population. Then, the worst individuals are eliminated

keeping the best ones until the population reaches the

original population size. Therefore, the best individuals

remain in the next generation.

• Diverge: when the population is stagnated a restart is

produced. The best individual is kept and the rest of the

population is generated again in a random way.

3.4 Collaboration process

Since an individual of a species represents only a sub-

component of the problem, collaborations are needed in

order to form complete solutions. Then, a collaborator will

be selected from each population to assess the fitness

according to a collaboration schema.

As mentioned in Sect. 2.3, there are four main collab-

oration schemas in the literature (Au and Leung 2007):

• Best collaboration (Potter and Jong 1994): choosing as

collaborator the best individual from the complementary

subpopulation, that is, the individual which fitness value

is the best in the previous generations.

• Random collaboration (Wiegand et al. 2001): one or

more collaborators are randomly chosen from the other

population.

• Complete collaboration (Panait et al. 2003): an indi-

vidual collaborates with all individuals from the other

population.

• Mixed collaboration (Panait et al. 2003): an individual

may collaborate with a fixed number of collaborators

according to different collaboration schemas, e.g., an

individual chooses the best collaborator and some

random collaborators. Mixed collaboration might turn

into best collaboration, if the number of collaborators is

set to 1.

There are three main and common collaboration credit

assignment methods used only when multiple collaborators

are selected:

• Optimistic: this method consists of assigning to an

individual the value of its best collaboration as fitness.

• Hedge: assigning a fitness equal to the average value of

its collaborations.

• Pessimistic: assigning as fitness the value of its worst

collaboration.

Wiegand et al. (2001) shows that using the optimistic

method is always significantly better than using hedge or

pessimistic, so that the optimistic is the one we use.

L-Co-R is implemented to use a best collaboration

scheme and optimistic approach for credit assignment.

More precisely, for every individual in the first population

the algorithm chooses the best collaborator of the other

population. Exceptionally, at the beginning of the evolu-

tionary process, since the population has not been evalu-

ated, individuals are evaluated by a random collaborator.

Once every individual has selected its collaborator (the

best one), the population asks for the collaborator to the

other population. Thus, the communication is not produced

at the end of a generation, but when a population asks for

the specific collaborator it needs. On the other hand, the

other population has been keeping the best representative

in every generation. So, the individual who is going to be

evaluated is coupled with the collaborator and the result

obtained is set as its fitness. Fitness function is calculated

using the Eq. 7.

F ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
t¼0ðYt � FtÞ2

q ð7Þ

This fitness is strictly assigned to the individual being

evaluated and it is not shared with the representative from the

other subpopulation that participates in the collaboration.

Figure 4 shows in detail the general process of collaboration

and evaluation fitness for the lags individuals. The process is

the same for RBFNs.
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3.5 Process of trend removing

L-Co-R automatically removes the trend of the time series

that need it. The process is clearly divided into two phases:

pre and postprocessing.

The preprocessing stage takes place before the evolu-

tionary process begins. In this phase, first of all, it is nec-

essary to know whether a time series includes trend or not.

For that, a least-square regression line is estimated by the

Eq. 8.

y ¼ axþ b ð8Þ

where a is the slope of the line, and b is the interception of

the line with the y-axis. On the other hand, a and b are

given by Eqs. 9 and 10, respectively.

a ¼
P

Ft � b
P

Yt

n
ð9Þ

b ¼ n
P

YtFt �
P

Yt

P
Ft

n
P

Y2
t � ð

P
YtÞ2

ð10Þ

Once the slope (a) is known, if it is significant, a

preliminary transformation of the data is used to make the

transformed data more compatible with the model. The

process of data transformation is done by means of

differentiation. This involves subtracting each data with

the previous one, obtaining a new series.

Once differentiation has been performed, the values |texp|

and |tteo| are calculated. |texp| is given by the Eq. 11 while

|tteo| is usually approximated to 2.043 value.

texp ¼
b1

1 � b2
1

Srffiffi
n
p

Sx

ð11Þ

where b1
1 is the slope of the line fitted to the data, b2

1 is the

value to compare the slope (value 0), Sr is the square root

of residual variance, n the number of data, and Sx is the

square root of x variance.

Since the objective is to detect if the slope is close

enough to 0:

• If |texp| [ |tteo|: the hypothesis that the slope is equal to

0 is rejected and therefore, another differentiation could

be made.

• If |texp| B |tteo|: there is no evidence to say that the slope

is not 0, or in other words, the trend has been

eliminated.

The postprocessing phase begins at the end of coevo-

lutionary process, when it is obtained the final RBFN?lag

model. Then, the differentiation process is undone in order

to provide the final forecasting of the test dataset.

4 Experiments

In this section we describe the experiments performed by

L-Co-R, the results obtained, a comparison with other six

methods, and a statistical study.

The experimental design takes into account the follow-

ing elements to consider:

• The experimentation has been realized with 34 bases of

examples (described in Sect. 4.1). They have different

characteristics with respect to number of data, period

of time and topic they represent. Most of them are

extracted from the Spanish National Statistics

Institute.1

• We compared the proposed method with other six

different methods (described in Sect. 4.3) found in

the literature: EvRBF, Fuzzy-WM, NNEP, Pol-

CuadraticLMS, RBFN, and ARIMA. Nevertheless, as

described in Sect. 4.3, we have use two different

configurations for NNEP and RBFN. For this reason the

tables and figures show the results containing two more

columns or bars.

• In order to compare with the other methods in the same

conditions, they were given the data without trend

obtained following the process of trend removing

(Sect. 3.5), and then, the postprocessing phase were

done to get the final results, like in L-Co-R algorithm.

Fig. 4 Collaboration process and fitness evaluation for P_lags

population. For the P_RBFNs population the process is the same

interchanging the roles of the populations

1 National Statistics Institute (http://www.ine.es/).
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• It has been used four quality measures: MAPE,

MdAPE, sMdAPE, and MASE in order show the

results obtained (see Sect. 4.4).

• These quality measures have been estimated by means

of forecasting 30 times, using the same training and test

sets in any execution, and with a horizon of forecasting

equal to 1.

4.1 Time series used

In order to test the effectiveness of the L-Co-R method 34

datasets have been used. These time series come from

different areas and have different statistical characteristics.

Next, a brief description of every one is given:

• Accidents: it represents the number of accidents during

a working day. The observations express the average of

accidents over a month and they cover from January

1979 until December 1998. The data are taken from the

INE2 and there are 240 observations.

• AccDeath: it represents the number of deaths on the

roads since 1990 until 2007. The observations were

extracted from DGT3 and it is composed of 216

observations.

• AccVictims: this time series represents the number of

road accident casualties, since 1990 until 2007. There

are 216 observations which were extracted from DGT

(see footnote 2).

• Airline: it represents the airplane passengers of inter-

national flies. The data are the average of a month

between January 1949 and December 1960. The time

series have been got from Box and Jenkins’ Time series

analysis forecasting and control (Box and Jenkins

1976).

• WorldMarket: is a set of seven time series, any of them

representing the monthly values about seven different

world markets. The observations were extracted from

January 1988 until December 2000. The source of the

information is Eurostat. Every time series is composed

of 156 observations.

• CrestColgate: these are four time series of the market

quota of toothpaste Crest and Colgate, and price of

both. The data are taken weekly among January 1958

and April 1963. The source is Assessing the impact

of market disturbances using intervention analysis

(Wichern and Jones 1977). Every time series is

composed of 276 observations.

• Deceases: this time series represents the number of

monthly deceases since 1980 until 1998. There are 228

observations, they were taken from the INE (see

footnote 1).

• Gasoline: it represents the finished motor gasoline

production (1,000 barrels) from 1993 to 2005. The

series is composed of 618 observations expressed daily

and it was taken from the NN3-competition.4

• Spectators: it corresponds to the number of 1,000

spectators who were in the cinema since 1990 until

2009. The observations are monthly expressed and this

time series is composed of 235 observations. The data

were taken from the MCU5 and INE (see footnote 1).

• SpaMovSpec: it represents the number of thousand

spectators who were watching a Spanish movie in the

cinema from 1990 until 2009. There are 235 observa-

tions expressed monthly extracted from the MCU (see

footnote 3) and INE (see footnote 1).

• ForMovSpec: this time series represents the number of

thousand spectators who were watching a foreign

movie in the cinema from 1990 until 2009. It is

composed of 235 observations expressed monthly and

extracted the MCU3 and INE (see footnote 1).

• Exchange: this time-series is composed of data repre-

senting the exchange rates between British Pound and

US Dollar during the period going from 31 December

1979 to 26 December 1983.6 Data are composed of 208

observations.

• MortCanc: it is the number of canceled mortgages from

2006 to 2009 in 43 observations. The data are taken

from the INE (see footnote 1).

• MortMade: it represents the number of made mortgages

since 2003 until 2009 in 79 observations. The data are

taken from the INE (see footnote 1).

• Books: it is the editorial production of books from 1998

to 2008. The data are taken from the INE1 and they are

composed of 132 observations.

• Motorcycles: this time series represents the manufac-

ture of motorcycles since 1990 until 2009. The data

were taken from the INE (see footnote 1), and ANFAC7

and Mityc.8

• Unemployed: it is the number of Spanish unemployed

people from 1996 to 2009. It is composed of 164

observations expressed monthly and they were taken

from INE (see footnote 1) and MTIN.9

2 National Statistics Institute (http://www.ine.es/).
3 The General Direction of Traffic (http://www.dgt.es/).

4 http://www.neural-forecasting-competition.com/NN3/datasets.htm.
5 The Ministry of Culture (http://www.mcu.es/).
6 Available from http://pacific.commerce.ubc.ca/xr/data.html, thanks

to the work done by Prof. Werner Antweiler, from the University of

British Columbia, Vancouver, Canada.
7 Spanish Association of Automobile and Truck Manufacturers

(http://www.anfac.com/).
8 The Ministry of Industry, Tourism and Trade (http://www.mityc.es/).
9 The Ministry of Labour and Immigration (http://www.mtin.es/).
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• FreeHousingPrize: it represents the price per m2 of

private housing collected quarterly. The time series is

composed of 58 observations from 1995 to 2009 and it

was taken from INE (see footnote 1) and MVIV.10

• Prisoners: it is the number of prisoners per month since

1990 until 2009. This time series is composed of 233

observations and they were taken from INE (see

footnote 1).

• Takings: it represents the average spending per

spectator since 1990 until 2009. There are 235 obser-

vations expressed in euros and they were extracted

from MCU (see footnote 3) and INE (see footnote 1).

• TurIn: it represents the internal air traffic from 1990 to

2009 in 234 observations. The observations were

extracted from General Direction of Civil Aviation of

the Ministry of Public Works.

• TurOut: it represents the external air traffic from 1990

to 2009 in 234 observations. The observations were

extracted from General Direction of Civil Aviation of

the Ministry of Public Works.

• TUrban: it is the number of passengers transported by

urban transport. The data are taken from the INE (see

footnote 1) and they are composed of 164 observations.

• Cars: it represents the vehicle manufacture (cars) from

1990 to August 2009. The data are taken from ANFAC

(see footnote 5), Mityc (see footnote 6), and INE (see

footnote 1). The data are composed of 236

observations.

• HouseFin: it is the number of finished houses from

1992 to 2009. They are composed of 211 observations

extracted from INE (see footnote 1) and Ministry of

Public Works.11

The time series can be accessed at https://sites.google.

com/site/presetemp/datos. For the experimentation, the

first 75% of the observations have been considered to

form the training data and the other 25% the test, for the

34 datasets.

4.2 Results obtained with L-Co-R

L-Co-R has been applied to the 34 time series with the

specific parameter values shown in Table 1.

Table 2 shows the results yielded by L-Co-R method. In

this table, from left to right, six kinds of results are shown:

Mean Absolute Percentage Error (MAPE), Median Abso-

lute Percentage Error (MdAPE), Symmetric Median

Absolute Percentage Error (sMdAPE), and Mean Absolute

Scaled Error (MASE) obtained when forecasting the data

test, the number of nodes composing the best net found by

the method, and the number of lags used by the net to

forecast. All these results are the average values calculated

after the 30 executions.

As can be seen in the Table 2, the RBFNs built by L-Co-R

turn to be non-complex models with respect to the number of

hidden neurons, while keeping a high degree of generaliza-

tion. This good property of the method is achieved without

imposing a limit to the number of neurons neither penalizing

the complexity when evaluating the nets.

4.3 Comparison with other methods

The performance of the algorithm L-Co-R has been com-

pared with six methods found in the literature. All of them,

except ARIMA, are extracted from Keel (Alcalá-Fdez

et al. 2009) which is a software tool developed to assess

evolutionary algorithms for Data Mining problems. It

contains a big collection of classical knowledge extraction

algorithms, preprocessing techniques, Computational

Intelligence based learning algorithms, including evolu-

tionary rule learning algorithms based on different

approaches, and hybrid models such as genetic fuzzy sys-

tems, or evolutionary neural networks, among others. The

methods considered in this work can be briefly described as

follows:

• EvRBF (Evolutionary Radial Basis Function Neural

Networks, Rivas et al. 2004). This method is focused

on determining the parameters of RBFNs (number of

neurons, and their respective centers and radii) auto-

matically. While this task is often done by hand, or

Table 1 Parameters used in L-Co-R

Parameter Value Description

PopSizeLag 50 Size of P_lags population

MaxGenerationLag 5 Maximum number of generations of

P_lags population

MaxLongCrom 10% Size of chromosome for lags

PopSizeRbfn 50 Size of P_RBFNs population

MaxGenerationsRbfn 10 Maximum number of generations of

P_RBFNs population

ValidationRate 0.25 Validation rate

NeuronsRate 0.05 Rate of neurons which indicates the

maximum number of neurons in the

first generation

TournamentSize 3 Tournament size

ReplacementRate 0.5 Replacement rate

XOverRate 0.8 Crossover rate

MutatorRate 0.2 Mutation rate

MaxGenerations 20 Total number of generations of

L-Co-R

Horizon 1 Horizon of the forecasting

10 The Ministry of Housing (http://www.mviv.es/).
11 http://www.fomento.es/.
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based in hill-climbing methods which are highly

dependent on initial values, in this method, evolution-

ary algorithms are used to automatically build an RBFN

that solves a specified problem.

• Fuzzy-WM (Fuzzy Rule Learning, Wang–Mendel

Algorithm, Wang and Mendel 2002). This is a general

method to generate fuzzy rules from numerical data.

This method can be used as a general way to combine

both numerical and linguistic information into a

common framework, a fuzzy rule base. This fuzzy rule

base consists of two kinds of fuzzy rules: some

obtained form experts, and others generated from

measured numerical data. It is proved that the generated

fuzzy system is able to approximate any nonlinear

continuous function on a compact set to arbitrary

accuracy.

• NNEP (Neural Network Evolutionary Programming,

Martı́nez-Estudillo et al. 2006). This method is based

on the evolution of a type of feed-forward neural

networks whose basis function units are products of the

inputs raised to real number power. These nodes are

usually called product units and the main advantage of

product units is their capacity to implement higher

order functions. Thus, NNEP evolves weights and

structure of product unit-based neural networks and it

has been applied to the regression function problem.

• PolCuadraticLMS (LMS Quadratic Regression) (Rustagi

1994). This deterministic model uses the quadratic

Table 2 Results of the L-Co-R

method
Dataset MAPE MdAPE sMdAPE MASE Nodes Average lags

Accidents 0.432 1.905 7.743 0.909 8.07 7.23

AccDeath 3.768 0.915 10.224 1.023 6.60 7.43

AccVictims 0.117 0.293 5.417 1.029 7.30 6.27

Airline 19.281 1.333 10.553 0.987 4.73 2.57

WmFrancfort 0.540 2.319 5.064 1.248 2.43 5.17

WmLondres 0.078 0.286 3.515 1.321 2.17 5.70

WmMadrid 0.309 0.521 3.699 1.300 2.40 5.80

WmMilan 1.223 0.546 4.572 1.182 2.40 5.37

WmNuevayork 0.094 0.520 3.096 1.231 2.93 4.90

WmParis 1.364 2.048 4.065 1.103 2.57 5.60

WmTokio 0.006 1.457 4.537 1.518 2.60 5.53

Colgtems 1.505 1.838 12.966 0.970 5.73 9.60

Colgtepr 0.254 0.115 2.152 0.858 8.50 7.43

Crestms 1.016 0.546 9.810 0.991 4.47 9.07

Crestpr 0.012 0.480 3.373 0.980 4.37 10.07

Deceases 0.057 0.033 7.409 0.999 7.10 7.20

Gasoline 4.292 2.806 15.949 0.977 13.67 22.43

Spectators 25.663 9.287 40.860 0.958 7.03 7.17

SpaMovSpec 3.698 0.027 17.766 0.910 2.63 9.67

ForMovSpec 0.323 0.013 0.932 1.145 6.20 7.63

Exchange 0.129 0.001 1.618 0.409 2.23 4.30

MortCanc 0.507 0.020 8.286 0.942 1.93 1.77

MortMade 1.218 0.586 10.533 1.133 1.93 1.77

Books 6.634 1.615 16.829 1.024 2.40 4.23

Motorcycles 86.173 4.604 25.549 1.025 3.03 8.53

Unemployed 9.206 3.318 3.579 3.224 10.50 3.40

FreeHousingPrize 1.415 1.088 1.102 0.873 2.40 1.20

Prisoners 0.214 0.192 0.371 0.462 3.67 7.77

Takings 3.064 2.512 15.146 0.965 5.83 7.03

TurIn 0.533 1.055 3.231 1.056 7.07 6.53

TurOut 1.140 0.693 4.541 0.999 8.33 7.57

TUrban 1.825 2.560 9.046 0.993 6.27 5.30

Cars 18.661 1.122 26.023 1.250 11.03 7.77

HouseFin 5.636 3.331 13.223 1.054 6.03 6.03
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regression to find values from other known. This type of

regression offers a higher adjustment of the points than

the lineal regression. The approach is performed using

the parameters of a parabola, which is given by the

Eq. 12:

y ¼ ax2 þ bxþ c ð12Þ

• RBFN. This method refers to the simple RBFN, as

described in Broomhead and Lowe (1988).

• ARIMA. The models proposed by G.E. Box and G.M.

Jenkins and better known as Box–Jenkins models (Box

and Jenkins 1976).

The NNEP2 and RBFN2 columns derive from a specific

adaptation of NNEP and RBFN methods, respectively.

They are the result of a study about the complexity of

the nets found by L-Co-R. Once the study was made, the

average number of neurons was used as parameter for the

algorithms. Then, NNEP and RBFN are equaled to L-Co-R

having the same initial complexity of the networks, which

is resulting in NNEP2 and RBFN2. Finally, NNEP2 and

RBFN2 have been executed with the nearest integer aver-

age number to the number of neurons obtained by L-Co-R

with every dataset. These average numbers can be seen in

Table 2.

Every method has been executed using the default

parameters, that is, those which have been considered

suitable by the authors of the algorithms. These parameters

are shown in Table 3 for every method. After that, Table 4

shows the ARIMA models obtained for every dataset.

The Estimated Partial Autocorrelation Function (EPAF)

has been used to work with the eight methods mentioned

before. It indicates which intervals of time from datasets

are considered more important to be taken into account

when patterns of data are going to be formed. One of the

main advantages of L-Co-R is that it is not necessary to

Table 3 Parameters used by the methods

Method Parameter Value

EvRBF Population size 100

Generations 10

Validation rate 0.25

Neurons rate 0.1

Tournament size 30

Replacement rate 0.75

Crossover rate 0.9

Mutator rate 0.1

NNEP Number of neurons in hidden

layer

4

Transfer function in each

neuron

Product_Unit

Number of generations 1,000

PolCuadraticLMS – –

RBFN Number of hidden neurons 50

Fuzzy-WM Number of labels 5

KB Output File Format with

Weight values to 1?

0

NNEP2 Number of neurons in hidden

layer

Depends on

the dataset

Transfer function in each

neuron

Product_Unit

Number of generations 1,000

RBFN2 Number of hidden neurons Depends on

the dataset

Table 4 ARIMA models obtained for every dataset

Dataset Model

Accidents ARIMA (3, 1, 2) with drift

AccDeath ARIMA (1, 1, 2) with drift

AccVictims ARIMA (2, 1, 2)

Airline ARIMA (4, 1, 2)

WmFrancfort ARIMA (1, 2, 2)

WmLondres ARIMA (0, 1, 0) with drift

WmMadrid ARIMA (1, 2, 2)

WmMilan ARIMA (0, 1, 0)

WmNuevayork ARIMA (1, 2, 1)

WmParis ARIMA (1, 1, 2) with drift

WmTokio ARIMA (0, 1, 0)

Colgtems ARIMA (0, 1, 1)

Colgtepr ARIMA (2, 1, 1) with drift

Crestms ARIMA (0, 1, 1)

Crestpr ARIMA (0, 1, 1)

Deceases ARIMA (0, 1, 0)

Spectators ARIMA (2, 1, 2) with drift

SpaMovSpec ARIMA (0, 1, 3)

ForMovSpec ARIMA (0, 1, 2) with drift

Exchange ARIMA (2, 1, 0) with drift

Gasoline ARIMA (2, 1, 2)

MortCanc ARIMA (0, 1, 1) with drift

MortMade ARIMA (3, 1, 3) with drift

Books ARIMA (0, 1, 1)

Motorcycles ARIMA (3, 1, 2)

Unemployed ARIMA (2, 1, 2) with drift

FreeHousingPrize ARIMA (3, 2, 1)

Prisoners ARIMA (0, 1, 2) with drift

Takings ARIMA (2, 1, 1) with drift

TurIn ARIMA (5, 1, 2) with drift

TurOut ARIMA (3, 1, 5) with drift

TUrban ARIMA (0, 1, 2) with drift

Cars ARIMA (0, 1, 1) with drift

HouseFin ARIMA (2, 1, 2) with drift
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apply any a priori preprocessing in this sense, since the

algorithm is able to automatically find the most suitable

lags during the evolution of the algorithm by itself. So, a

previous study of the significant lags was made to test

every method used to compare. Table 5 shows a compar-

ison between lags selected by the EPAF and the selected

ones by L-Co-R. As can be seen, L-Co-R selects less lags

than EPAF in 15 from the 34 datasets, more lags in 18

cases, and for 1 dataset the number of lags is the same in

both methods.

Tables 6, 7, 8, and 9 show the results yielded by the

methods EvRBF, NNEP, PolCuadraticsLMS, RBFN,

Fuzzy-WM, NNEP2, RBFN2, and ARIMA compared to

L-Co-R. They show the MAPE, MdAPE, sMdAPE, and

MASE, respectively, yielded when forecasting the test data

by every method. As can be seen in the Tables 6, 7, 8, and

9, L-Co-R yields good results in general with regard to all

error measures. Best results, that is, lower errors, are

emphasized in bold.

L-Co-R obtains the best result in 31 of the 34 datasets

tested for MAPE, in 33 of 34 for MdAPE, in 21 of 34 for

sMdAPE, and in 19 of the 34 for MASE.

4.4 Statistical study and conclusions

of the experimentation

A statistical study has been done in order to check if the

differences among methods are significant for each one of

Table 5 Lags selected by

EPAF and L-Co-R for each

dataset

Dataset EPAF L-Co-R

Accidents 1,3,4,9,11,12,13,15,25,57 1,2,3,7,9,12

AccDeath 1,7,8,10,11,12,13,15,23,40,44 1,4,6,8,12

AccVictims 1,7,8,9,12,13,18,22,25,26,27,49 1,3,6,12

Airline 1,4,11,12,13,23 1,2,4

WmFrancfort 1,3,30 1,3,6,10

WmLondres 1 4,8,10

WmMadrid 1,12,30 1,3,4,5,6,9,10

WmMilan 1,30 2,8,10

WmNuevayork 1,30 3,6,7,10,11

WmParis 1,30 1,2,4,5,7,8,10,11

WmTokio 1,6 5,7,9,10,11

Colgtems 1,2,3,5,30 1,2,4,6,9,10,12,15,16

Colgtepr 1,2,3,4 1,2,4,12,15,17

Crestms 1,2,3 1,2,3,4,7,10

Crestpr 1,2,3,4,5 1,4,7,9,11,12,13,14,19,20

Deceases 1,3,9,10,11,12,13,23,24,25,37 1,3,4,5,7,8,9,12,13

Spectators 1,3,7,9,11,12,13,14,23,24,26,29,36 4,6,8,10,11,12,14,15,17

SpaMovSpec 1,5,10,11,24,50 1,3,4,6,9,11,13,14,15,17

ForMovSpec 1,3,4,5,7,11,12,13,24,29,39 1,2,4,6,8,9,10,12,13

Exchange 1 1,3,5,6,7

Gasoline 1,2,3,4,5,6,7,8,14,27 1,3,5,13,14,16,17,19,24,25,30,31,33,42

MortCanc 1 1,2,3

MortMade 1,2,4,6,7,8 1,3,4

Books 1,12 3,5,6,8,9

Motorcycles 1,2,4,5,6,7,8,10,11,12,13,14,25,48 1,4,8,9,10,11,12,15

Unemployed 1 1,8

FreeHousingPrize 1 4

Prisoners 1 2,4,6,12,13,14,15,17

Takings 1,2,3,6,7,8,9,11,12,13,14,23,25,26,31 1,2,3,5,9,10,12

TurIn 1,2,6,7,8,9,13,25 1,2,6,11,12,15,17

TurOut 1,3,5,6,7,9,13,16,21 1,2,3,4,7,8,10,12

TUrban 1,3,4,6,9,11,12,13,14,15 1,4,5,7,8,9,12

Cars 1,4,8,9,12,13,14,15,22 1,5,6,8,12,16

HouseFin 1,2,3,4,8,11,12,13,14,15,17,22,35 3,4,6,7,8,9,12,14

Coevolution of lags and RBFNs for time series forecasting
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the quality measures considered, MAPE, MdAPE, sMdA-

PE, and MASE.

The use of parametric statistical techniques over the

sample of results is only adequate when they fulfill three

necessary conditions: independency, normality, and

homoscedasticity (Sheskin 2006; Zar 1999). With respect

to normality condition, we applied Shapiro–Wilk test as it

is used in work by Garcı́a et al. (2009). This test confirmed

that the condition was not fulfilled; therefore, a non-para-

metric test should be used.

Then, in order to test whether significant differences exist

among all methods, Friedman and Iman–Davenport tests

have been applied. Tables 10 and 11 show the results: the

Friedman and Iman–Davenport values (v2 and FF, respec-

tively), the corresponding critical values for each distribu-

tion by using a level of significance a = 0.05, and the p value

obtained for all measures used. The statistics of Friedman

and Iman–Davenport are clearly greater than their associ-

ated critical values, so it can be concluded that there are

significant differences among the observed results with a

level of significance a� 0:05; in all cases. According to

these results, a post-hoc statistical analysis is needed.

Tables 12 and 13, and graphically Figs. 5, 6, 7, and 8,

show a ranking of the methods obtained by Friedman

Table 7 Comparison among the methods with respect to MdAPE

Dataset L-Co-R EvRBF NNEP Fuzzy-WM PolCuadLMS RBFN NNEP2 RBFN2 ARIMA

Accidents 1.905 47.412 36.375 36.243 44.996 33.954 38.149 35.492 13.683

AccDeath 0.915 98.673 190.886 266.875 221.828 186.757 199.549 184.601 16.380

AccVictims 0.293 90.021 31.935 138.363 120.674 33.935 37.160 36.344 9.504

Airline 1.333 16.750 3.524 15.802 6.224 7.941 3.834 9.103 15.212

WmFrancfort 2.319 26.487 30.587 24.032 25.142 26.494 30.718 26.721 11.026

WmLondres 0.286 16.598 14.150 6.395 6.834 7.035 14.378 7.043 5.099

WmMadrid 0.521 20.763 22.195 19.046 20.638 20.771 22.498 20.782 11.446

WmMilan 0.546 41.636 40.131 37.717 39.213 39.073 39.453 39.487 34.643

WmNuevayork 0.520 28.271 24.030 22.539 22.034 22.345 24.341 22.838 5.712

WmParis 2.048 31.337 40.691 41.657 40.450 40.328 40.784 40.369 23.773

WmTokio 1.457 53.528 34.135 25.949 33.329 32.644 34.238 34.392 9.556

Colgtems 1.838 105.204 107.239 104.643 108.514 108.867 107.077 105.630 13.806

Colgtepr 0.115 35.676 20.120 20.730 21.254 20.835 20.001 20.587 6.364

Crestms 0.546 32.681 7.318 10.865 7.988 8.767 7.760 9.347 12.697

Crestpr 0.480 11.255 2.921 3.235 2.458 3.192 2.914 2.979 3.414

Deceases 0.033 71.158 32.146 65.168 51.209 24.012 40.327 25.993 5.458

Spectators 2.806 170.139 189.701 244.679 181.648 200.650 194.851 191.784 39.955

SpaMovSpec 9.287 104.833 113.331 345.402 143.447 112.690 169.294 113.692 54.033

ForMovSpec 0.027 101.443 278.349 434.823 272.276 291.237 284.306 312.477 32.322

Exchange 0.013 16.422 17.009 45.882 45.677 45.799 17.008 45.770 45.961

Gasoline 0.001 14.589 48.975 47.156 50.773 48.895 49.424 48.170 8.923

MortCanc 0.020 84.455 19.699 25.595 11.564 10.092 19.336 12.039 5.116

MortMade 0.586 17.668 19.650 24.128 15.838 13.239 18.006 23.200 28.374

Books 1.615 110.920 21.143 17.446 20.432 22.652 20.336 19.216 18.093

Motorcycles 4.604 104.070 37.822 30.900 157.470 36.581 42.096 36.201 43.058

Unemployed 3.318 8.489 2.331 8.023 2.308 2.669 2.421 4.945 10.698

FreeHousingPrize 1.088 6.610 4.071 4.145 3.657 3.735 4.027 3.831 6.572

Prisoners 0.192 19.603 25.763 20.521 21.552 26.298 25.769 26.952 1.621

Takings 2.512 109.377 55.852 135.472 93.241 59.132 57.722 55.492 24.928

TurIn 1.055 10.668 6.919 4.524 4.902 4.351 6.816 4.415 4.605

TurOut 0.693 12.715 3.624 3.984 4.443 4.232 4.078 3.477 7.689

TUrban 2.560 129.223 66.730 74.341 57.560 19.885 127.745 22.819 6.374

Cars 1.122 103.049 278.362 528.130 283.314 282.586 295.020 272.297 14.808

HouseFin 3.331 35.493 14.757 41.579 40.426 18.632 18.461 17.816 17.297
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method. The best method is stressed in bold for every

measure.

As can be seen in Tables 12 and 13, the new method

L-Co-R achieves the best ranking with a result that is lower

than the rest for all measures, so it is taken as the control

algorithm.

After this, a post-hoc test is used to find whether the

control algorithm presents statistical differences with

regard to the remaining methods in the comparison. As it is

recommend in Garcı́a et al. (2009), we apply the Holm

(1979) procedure. Tables 14 and 15 show all the adjusted p

values for each comparison which involves the control

algorithm, for MAPE, MdAPE, sMdAPE, and MASE,

respectively. The p value is indicated in each comparison

considering a level of significance a = 0.05.

As it is shown in Tables 14 and 15, there are signifi-

cant differences between L-Co-R and the remaining

methods for all measures used. Therefore, we can con-

clude that the new algorithm really shows a better

behavior with respect to test error comparing to other

methods. Even with the methods NNEP2 and RBFN2, in

which the complexity of the initial networks are the same

than in L-Co-R, the new algorithm yielded better results

with significant differences.

Taking everything into account, L-Co-R stands out for

its accurate over a large set of sample data, which has

Table 8 Comparison among the methods with respect to sMdAPE

Dataset L-Co-R EvRBF NNEP Fuzzy-WM PolCuadLMS RBFN NNEP2 RBFN2 ARIMA

Accidents 7.743 33.318 40.987 38.315 45.334 40.577 41.318 42.910 14.688

AccDeath 10.224 2115.993 101.641 114.807 83.938 97.627 102.772 97.126 15.140

AccVictims 5.417 25.769 24.763 85.137 60.897 29.364 28.545 30.836 9.073

Airline 10.553 17.372 3.484 14.640 6.109 7.815 3.796 8.822 16.297

WmFrancfort 5.064 30.531 36.027 27.314 28.756 30.541 36.151 30.843 11.308

WmLondres 3.515 18.101 15.227 6.606 6.976 6.983 15.493 7.050 5.233

WmMadrid 3.699 23.069 24.275 21.050 23.013 23.180 24.754 23.193 10.827

WmMilan 4.572 50.803 48.057 46.482 48.777 48.562 48.175 49.202 41.900

WmNuevayork 3.096 32.925 27.202 25.402 24.762 25.157 27.627 25.785 5.553

WmParis 4.065 37.160 50.854 52.617 50.705 50.515 50.776 50.578 26.980

WmTokio 4.537 35.434 29.158 22.969 28.568 28.046 29.233 29.325 9.120

Colgtems 12.966 13.273 69.800 68.699 70.346 70.182 69.733 68.528 13.315

Colgtepr 2.152 16.305 18.281 18.783 19.212 18.863 18.182 18.661 6.168

Crestms 9.810 2.781 7.527 10.437 8.320 8.976 7.993 9.586 13.557

Crestpr 3.373 10.664 2.899 3.184 2.429 3.172 2.905 2.977 3.474

Deceases 7.409 93.774 33.424 51.428 42.748 27.195 34.306 29.752 5.453

Spectators 15.949 84.231 97.391 110.043 95.185 100.121 98.457 97.811 33.302

SpaMovSpec 40.860 12.974 67.632 129.367 90.029 81.827 74.277 82.023 59.943

ForMovSpec 17.766 107.665 116.614 136.960 115.299 118.502 116.155 121.792 27.822

Exchange 0.932 17.892 18.590 59.541 59.197 59.401 18.589 59.353 59.674

Gasoline 1.618 15.374 64.703 61.705 67.624 64.838 64.732 63.551 9.036

MortCanc 8.286 96.567 16.505 29.354 11.218 9.935 17.349 11.796 5.256

MortMade 10.533 17.518 21.203 27.439 15.876 13.871 19.433 27.224 24.849

Books 16.829 8.183 19.584 17.440 18.751 22.199 19.002 19.356 19.574

Motorcycles 25.549 14.159 37.437 28.024 47.660 44.287 36.474 43.379 50.360

Unemployed 3.579 8.429 2.338 8.031 2.305 2.685 2.432 4.874 11.340

FreeHousingPrize 1.102 6.601 4.154 4.233 3.725 3.807 4.107 3.906 6.362

Prisoners 0.371 21.616 29.460 22.867 24.155 30.310 29.460 31.216 1.634

Takings 15.146 52.149 43.116 80.763 68.738 45.604 44.487 43.387 22.165

TurIn 3.231 10.331 6.687 4.424 4.785 4.258 6.578 4.324 4.714

TurOut 4.541 12.007 3.583 3.985 4.434 4.143 4.012 3.425 7.600

TUrban 9.046 19.083 27.125 54.196 51.593 18.860 41.279 21.445 6.584

Cars 26.023 2180.476 143.135 175.122 132.439 147.887 142.626 144.447 13.784

HouseFin 13.223 42.745 13.771 39.028 44.051 20.366 15.925 19.193 17.278
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different characteristics and nature; for instance, AccDeath

describes the number of deaths on the roads monthly,

whereas FreeHousingPrize represents the price per m2 of

private housing collected quarterly. Although L-Co-R

considers in fitness function neither the simplicity of the

networks nor the size of the set of lags, it designs simple

and appropriate RBFNs and it is able to automatically

determine a suitable set of lags for the specified network,

finding small sets of lags that can be smaller than the ones

found by EPAF. In addition, L-Co-R includes an automatic

process to remove the trend of the time series with which it

works.

Table 9 Comparison among the methods with respect to MASE

Dataset L-Co-R EvRBF NNEP Fuzzy-WM PolCuadLMS RBFN NNEP2 RBFN2 ARIMA

Accidents 0.909 34.960 79.328 0.739 3.081 5.029 65.152 5.086 2.237

AccDeath 1.023 136.922 4.380 8.183 4.517 5.803 5.153 5.833 0.972

AccVictims 1.029 30.513 69.999 13.270 3.607 4.651 25.986 4.913 1.578

Airline 0.987 0.191 0.092 0.870 0.365 0.292 0.103 0.315 1.441

WmFrancfort 1.248 14.313 32.036 6.414 6.913 7.005 45.540 7.011 7.988

WmLondres 1.321 13.958 4.927 1.707 2.039 2.111 4.950 1.982 3.484

WmMadrid 1.300 2.863 3.066E?17 5.081 5.387 5.394 1.187E?16 5.491 8.625

WmMilan 1.182 11.545 39.441 10.885 11.294 11.283 24.751 11.338 19.327

WmNuevayork 1.231 29.834 9.139 7.258 7.367 7.342 8.623 7.436 6.228

WmParis 1.103 19.547 8.980 14.759 14.778 14.728 9.228 14.652 15.744

WmTokio 1.518 29.756 5.194 3.993 5.108 4.984 5.198 5.254 1.628

Colgtems 0.970 70.262 2.986 2.893 3.061 3.064 2.977 2.899 0.869

Colgtepr 0.858 101.366 5.726 6.144 6.127 6.100 6.139 5.996 2.307

Crestms 0.991 65.133 0.561 0.631 0.534 0.548 0.554 0.660 1.418

Crestpr 0.980 26.111 0.553 0.488 0.548 0.583 0.514 0.486 1.330

Deceases 0.999 84.219 460.625 6.838 4.162 2.238 998.835 2.300 1.144

Spectators 0.977 9.684 3.817 5.137 3.663 3.849 3.838 3.794 1.831

SpaMovSpec 0.958 17.614 6.244E?06 2.959 1.470 0.886 2.291E?07 0.806 1.933

ForMovSpec 0.910 1.374 3.550 4.672 3.931 3.769 2.917 3.849 1.626

Exchange 1.145 31.420 15.009 54.223 54.266 54.346 14.739 54.309 70.734

Gasoline 0.409 21.430 16.742 12.722 17.974 17.166 101.233 17.059 1.698

MortCanc 0.942 7.834 7.926 0.387 3.062 2.508 8.590 2.669 0.277

MortMade 1.133 0.874 0.703 1.075 1.753 0.269 0.600 1.570 1.712

Books 1.024 40.588 1.055 0.822 0.508 0.385 0.596 0.654 1.147

Motorcycles 1.025 21.548 28.792 1.123 4.316 1.242 19.197 1.215 2.670

Unemployed 3.224 5.774 6.191 1.886 2.680 3.005 6.087 3.899 15.809

FreeHousingPrize 0.873 8.559 1.951 2.397 2.382 2.292 1.885 2.377 6.805

Prisoners 0.462 72.334 22.037 33.725 22.131 39.834 24.705 35.566 4.031

Takings 0.965 8.315 2.184 4.842 1.676 2.254 2.257 2.142 1.978

TurIn 1.056 8.825 1.974 1.180 1.241 1.132 1.865 1.089 1.950

TurOut 0.999 19.311 0.586 0.798 0.758 0.792 1.944 0.672 2.241

TUrban 0.993 58.326 1,565.053 10.555 0.241 1.597 8,465.803 2.343 0.897

Cars 1.250 77.501 3.260 6.620 3.186 3.409 3.637 3.420 1.048

HouseFin 1.054 8.390 155.469 2.147 1.678 0.216 189.479 0.225 1.502

Table 10 Results of the Friedman test (a = 0.05)

Measure Friedman value Value in v2 p value

MAPE 122.925 8 1.010E-10

MdAPE 101.051 8 6.431E-11

sMdAPE 58.168 8 1.104E-9

MASE 68.996 8 7.000E-11

Table 11 Results of the Iman–Davenport test (a = 0.05)

Measure Iman–Davenport value Value in FF p value

MAPE 27.212 8 and 264 1.278E-30

MdAPE 19.507 8 and 264 5.070E-23

sMdAPE 8.976 8 and 264 6.875E-11

MASE 11.216 8 and 264 1.181E-13
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5 Conclusions and future research

This work describes the L-Co-R method, a coevolutionary

algorithm for time series forecasting. L-Co-R simulta-

neously evolves two populations or different individual

species, RBFNs and sets of lags that will be used to predict

future values. In the population of RBFNs, a set of neural

networks evolves trying to obtain a suitable network archi-

tecture. The population of lags is formed by sets of signifi-

cant lags that are used to forecast future values. Any member

of a population has to cooperate with individuals from the

other populations (collaborators) to generate good solutions.

L-Co-R has been tested across 34 datasets from different

areas and with different statistical characteristics. In

Table 12 Average Rankings of the algorithms (Friedman) for MAPE

and MdAPE. The method on the top of the table corresponds to the

best classified

MAPE MdAPE

Method Ranking Method Ranking

L-Co-R 1.412 L-Co-R 1.118

ARIMA 3.382 ARIMA 3.765

RBFN2 4.529 RBFN 5.088

RBFN 4.558 RBFN2 5.265

PolCuadLMS 5.118 NNEP 5.382

Fuzzy-WM 5.324 PolCuadLMS 5.500

NNEP 6.441 NNEP2 6.059

NNEP2 6.971 Fuzzy-WM 6.176

EvRBF 7.265 EvRBF 6.647

Table 13 Average Rankings of the algorithms (Friedman) for sMd-

APE and MASE. The method on the top of the table corresponds to

the best classified

sMdAPE MASE

Method Ranking Method Ranking

L-Co-R 2.059 L-Co-R 2.441

ARIMA 3.971 RBFN 4.441

EvRBF 5.147 PolCuadLMS 4.529

NNEP 5.206 RBFN2 4.706

PolCuadLMS 5.441 ARIMA 4.735

RBFN 5.500 Fuzzy-WM 4.794

NNEP2 5.618 NNEP 5.794

RBFN2 5.974 NNEP2 6.147

Fuzzy-WM 6.265 EvRBF 7.441

Fig. 5 Graphic of the ranking

of the methods for MAPE.

Lower values represent better

predictions of the test dataset

Fig. 6 Graphic of the ranking

of the methods for MdAPE.

Lower values represent better

predictions of the test dataset
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addition, the new algorithm has been compared with six

different methods found in the literature and with four

different quality measures.

A statistic study has been carried out in order to confirm

the first observations in the results. First, Friedman and

Iman–Davenport tests have been applied to test whether

significant differences exist among all methods, and then

Holm procedure to find whether the control algorithm

(L-Co-R) presents statistical differences with respect to the

remaining methods.

Then, it can be affirmed that L-Co-R yields good results

with respect to the other methods, taking into account the

large set of sample data, which have different character-

istics and nature. L-Co-R designs simple and appropriate

Fig. 7 Graphic of the ranking

of the methods for sMdAPE.

Lower values represent better

predictions of the test dataset

Fig. 8 Graphic of the ranking

of the methods for MASE.

Lower values represent better

predictions of the test dataset

Table 14 Adjusted p valuesof Holm’s procedure for the comparison

of the control algorithm (L-Co-R) with the remaining algorithms with

respect to MAPE and MdAPE

MAPE MdAPE

Method p Holm Method p Holm

EvRBF 9.85E-18 EvRBF 6.76E-16

NNEP2 4.07E-16 Fuzzy-WM 1.83E-13

NNEP 2.21E-13 NNEP2 6.08E-13

Fuzzy-WM 1.93E-08 PolCuadLMS 2.09E-10

PolCuadLMS 9.66E-08 NNEP 5.43E-10

RBFN 6.47E-06 RBFN2 1.28E-09

RBFN2 6.47E-06 RBFN 4.52E-09

ARIMA 3.00E-03 ARIMA 6.74E-05

Table 15 Adjusted p values of Holm’s procedure for the comparison

of the control algorithm (L-Co-R) with the remaining algorithms with

respect to sMdAPE and MASE

sMdAPE MASE

Method p Holm Method p Holm

Fuzzy-WM 1.93E-09 EvRBF 4.13E-13

RBFN2 1.31E-07 NNEP2 1.69E-07

NNEP2 5.04E-07 NNEP 2.67E-06

RBFN 1.10E-06 Fuzzy-WM 1.98E-03

PolCuadLMS 1.41E-06 ARIMA 2.21E-03

NNEP 6.47E-06 RBFN2 2.21E-03

EvRBF 6.65E-06 PolCuadLMS 3.33E-03

ARIMA 4.00E-03 RBFN 3.33E-03
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RBFNs, and finds small and suitable set of lags. Further-

more, the method proposed is able to automatically remove

the trend of the time series.

In any case, further study must be performed in order to

assess the robustness of the new method as well as the

effectiveness of their predictions for long-time forecasting

and with a changing horizon environment. Future works

should also include the study of the effect of the credit

assignment and the number of collaborators in the process

of collaboration.
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