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Abstract

One of the problems that focus the research in the linguistic fuzzy modeling area is the trade-off
between interpretability and accuracy. To deal with this problem, different approaches can be found
in the literature. Recently, a new linguistic rule representation model was presented to perform a
genetic lateral tuning of membership functions. It is based on the linguistic 2-tuples representation
that allows the lateral displacement of a label considering an unique parameter. This way to work
involves a reduction of the search space that eases the derivation of optimal models and therefore,
improves the mentioned trade-off.

Based on the 2-tuples rule representation, this work proposes a new method to obtain linguistic fuzzy
systems by means of an evolutionary learning of the data base a priori (number of labels and lateral dis-
placements) and a simple rule generation method to quickly learn the associated rule base. Since this rule
generation method is run from each data base definition generated by the evolutionary algorithm, its
selection is an important aspect. In this work, we also propose two new ad hoc data-driven rule gener-
ation methods, analyzing the influence of them and other rule generation methods in the proposed learn-
ing approach. The developed algorithms will be tested considering two different real-world problems.
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1. Introduction

One of the problems associated to linguistic fuzzy modeling (FM), modeling of systems
building a linguistic model clearly interpretable by human beings, is its lack of accuracy
when modeling some complex systems. It is due to the inflexibility of the concept of lin-
guistic variable, which imposes hard restrictions to the fuzzy rule structure [1]. This draw-
back leads linguistic FM to sometimes move away from the desired trade-off between
interpretability and accuracy, thus losing the usefulness of the model finally obtained.

Many different possibilities to improve the accuracy of linguistic FM while preserving
its intrinsic interpretability have been considered in the specialized literature [2,3]. These
approaches try to induce a better cooperation among the rules by acting on one or two
different model components: the data base (DB) – containing the parameters of the linguis-
tic partitions – and the rule base (RB) – containing the set of rules. An efficient way to do
that is to obtain the whole knowledge base (KB) – RB and DB – by learning the DB a

priori [4–10], i.e., considering a process that learns the DB and wraps a simple method
to derive a set of rules for each DB definition. Most of the works based on these kinds
of learning use genetic algorithms (GAs) for the learning of the DB parameters.

In fact, the automatic definition of fuzzy systems can be considered as an optimization
or search process and nowadays, evolutionary algorithms, particularly GAs, are consid-
ered as the more known and used global search technique. Moreover, the genetic coding
that they use allow them to include prior knowledge to lead the search up. For this reason,
evolutionary algorithms have been successfully applied to learn fuzzy systems in the last
years, giving way to the appearance of the so called genetic fuzzy systems [11,12].

On the other hand, to ease the genetic optimization of the DB parameters a new linguis-
tic rule representation model was presented in [13]. It is based on the linguistic 2-tuples
representation [14] that allows the lateral displacement of a label considering an unique
parameter. This way to work involves a reduction of the search space that eases the der-
ivation of optimal models.

In this work, we propose a new method to obtain whole KBs by means of an evolution-
ary learning of the DB a priori that is based on the linguistic 2-tuples rule representation
[14]. This method consists of an evolutionary process that learns the optimal number of
labels per variable and the lateral displacement of such labels. For each DB definition gen-
erated by the evolutionary algorithm, a quick rule generation process is run to obtain the
RB. Additionally, in order to improve the generalization ability of the models so obtained
we propose a new inference system considering non-covered input examples.

This way to work, makes the selection of the rule generation process become an impor-
tant aspect. A preliminary study of the proposed technique was presented in [15] consid-
ering the Wang and Mendel’s (WM) algorithm [16] as a first approach for the rule
derivation. To perform a better study, we also propose two new ad hoc data-driven rule
generation methods in this contribution, analyzing their influence in the proposed KB
learning technique. Furthermore, these methods will be analyzed by solving two real-
world problems from both, the accuracy and the interpretability point of view.
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This contribution is arranged as follows. The next section describes the linguistic rule
representation model based on the linguistic 2-tuples and proposes the new inference sys-
tem. Section 3 introduces the learning scheme considered in this work and proposes the
new evolutionary learning algorithm to obtain whole KBs. Section 4 presents two new
ad hoc data-driven rule generation methods and explains how they can be integrated in
the proposed evolutionary algorithm. Section 5 shows an experimental study considering
two different real-world problems. Finally, Section 6 points out some concluding remarks.

2. Rule representation based on the linguistic 2-tuples

In [13], a new model of tuning of fuzzy rule-based systems (FRBSs) was proposed con-
sidering the linguistic 2-tuples representation scheme introduced in [14], which allows the
lateral displacement of the support of a label and maintains a good interpretability asso-
ciated to the obtained linguistic FRBSs. This tuning proposal also introduces a new model
for rule representation based on the concept of symbolic translation [14] (the lateral dis-
placement of a label).

Respect to the classical tuning [11,17–23], usually considering three parameters in the
case of triangular membership functions (MFs), this way to work involves a reduction
of the search space that eases the derivation of optimal models, preserving the original
shape of the MFs.

The following subsections present the concept of symbolic translation, the linguistic 2-
tuples rule representation and the new inference system proposed in this work to consider
non-covered input examples.

2.1. The symbolic translation of a label

The symbolic translation of a linguistic term is a number within the interval [�0.5, 0.5)
that expresses the domain of a label when it is moving between its two lateral labels. Let us
consider a set of labels S representing a fuzzy partition. Formally, we have the pair,

ðsi; aiÞ; si 2 S; ai 2 ½�0:5; 0:5Þ:
Fig. 1 depicts the symbolic translation of a label represented by the pair (S2,�0.3), consid-
ering a set S with five linguistic terms represented by their ordinal values ({0, 1,2,3,4}).

Actually, the symbolic translation of a label involves the lateral displacement of the MF
that represents such label. As an example, Fig. 2 shows the lateral displacement of the
label M. The MF of the new label ‘‘y2’’ is located between S and M, being still closer to M.
0 1 2 3 4

-0.3

1.7

(S  ,-0.3)2

S0 S1 S2 S3 S4

0.5 1-0.5-1

Fig. 1. Symbolic translation of a label.



y2ES MSVS L VL EL ES MSVS L VL EL
y2

α  = -0.5

Fig. 2. Lateral displacement of the linguistic label M considering the set of labels S = {ES,VS,S,M,L,VL,EL}.
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2.2. Rule representation

In [14], both the linguistic 2-tuples representation model and the needed elements for
linguistic information comparison and aggregation are presented and applied to the deci-
sion making framework. In the context of the FRBSs, we are going to see its use in the
linguistic rule representation. In the next we present this approach considering a simple
control problem. Let us consider a control problem with two input variables, one output
variable and a DB defined from experts determining the MFs for the following labels:

Error; rError ! fN ; Z; Pg; Power ! fL;M ;Hg:
Based on this DB definition, an example of classical rule and linguistic 2-tuples represented
rule is:

Classical rule,
If error is Zero and $Error is positive then Power is high.

Rule with 2-tuples representation,
If error is (Zero,0.3) and $Error is (Positive,�0.2) then Power is (High,�0.1).

In [13], two different rule representation approaches were proposed, a global approach
and a local approach. In our particular case, the learning is applied to the level of linguistic
partitions (global approach). In this way, the pair (Xi, label) takes the same a value in all
the rules where it is considered, i.e., a global collection of 2-tuples is considered by all the
fuzzy rules. For example, Xi is (High, 0.3) will present the same value for those rules in
which the pair ‘‘Xi is High’’ was initially considered.

The main achievement is that, since the three parameters usually considered per label
[11,17–23] are reduced to only one symbolic translation parameter, this proposal decreases
the learning problem complexity easing indeed the derivation of optimal models. Other
important issue is that, the learning of the displacement parameters keeps the original shape
of the MFs (in our case triangular and symmetrical). In this way, from the parameters a
applied to each label, we could obtain the equivalent triangular MFs, by which a FRBS
based on linguistic 2-tuples could be represented as a classical Mamdani FRBS [24,25].

2.3. A new fuzzy inference system

Once the 2-tuples represented model is transformed to its equivalent classical Mamdani
FRBS (obtaining the displaced MFs from the learned 2-tuples), a classical fuzzy reasoning
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could be considered. In our case, the fuzzy reasoning method is the minimum t-norm play-
ing the role of the implication and conjunctive operators, and the center of gravity weighted

by the matching strategy acting as defuzzification operator [26] (FITA scheme).
However, since we are searching for models with the smallest possible number of rules

(compact linguistic models) and the support of the final MFs comprising that rules can be
displaced, there could be non-covered zones in the input space. Taking into account that
the learning algorithm is biased by error measures, this fact should not be a problem (non-
covered training data usually provokes high errors in the system and finally they would be
covered). However, a good behavior of the obtained model is not ensured for the non-cov-
ered test data (i.e., the generalization of the final linguistic model could not be good for
uncovered inputs). In this way, to consider non-covered input data for the system output
computation, the following mechanism is applied when non-covered points are found:

(1) The nearest rule to the non-covered point is identified (normalized euclidean distance
to the vertex of the labels). The non-covered coordinates of the point are set to the
value of the vertex of the corresponding label.

(2) The second nearest rule is identified. Then, if the consequent labels of both rules
present overlapping to some degree, we only infer with the nearest rule since it will
be the most representative in a subspace that does not present strong changes in the
output domain.

(3) In other case, the final FRBS output should be obtained by interpolation of both
rules, since strong changes are detected in this subspace output domain. To do that,
the coordinates of the point that are initially covered are displaced towards the sec-
ond rule, ensuring a minimum covering degree of the nearest rule (nearing these
coordinates to the corresponding label extreme at the 10% of the support size). As
an example, let ei be a coordinate of the non-covered point e that is initially covered
by the corresponding label of the nearest rule fa1st

i ; b
1st
i ; c

1st
i g (left extreme, vertex and

right extreme). And let fa2nd
i ; b2nd

i ; c2nd
i g be the definition points of the corresponding

label of the second nearest rule. Then, the new value e0i is computed as follows:

e0i ¼
a1st

i þ ðc1st
i � a1st

i Þ � 0:1; If b2nd
i < b1st

i ;

c1st
i � ðc1st

i � a1st
i Þ � 0:1; If b2nd

i > b1st
i ;

ei; If b2nd
i ¼ b1st

i :

8><
>:

(4) Finally, we infer with the new input values considering the whole RB.
3. Evolutionary algorithm for learning of the knowledge base

This section presents the learning scheme and the specific evolutionary algorithm
proposed in this work to obtain whole KBs based on the linguistic 2-tuples rule
representation.

3.1. KB derivation by learning the DB a priori

As said, an efficient way to generate the whole KB of a FRBS consists of obtaining the
DB and the RB separately, based on the DB learning a priori [4–10]. This way to work
allows us to learn the most adequate context [5,8] for each fuzzy partition, which is
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Fig. 3. Learning scheme of the KB.
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necessary in different contextual situations (different applications) and for different fuzzy
rule extraction models.

Although different optimization techniques could be considered for the learning of the
DB parameters a priori, in this work, we consider an evolutionary algorithm for this task.
In this way, the learning scheme considered for the learning of whole KBs is comprised of
two main components (see Fig. 3):

• An evolutionary process to learn the DB, which allows to define:
– The number of labels for each linguistic variable.
– The lateral displacements of such labels.
• A quick ad hoc data-driven method to derive a RB from each DB definition generated
by the evolutionary process. In this way, the cooperative action of both components
allows to finally obtain the whole definition of the KB (DB and RB). The simple
WM algorithm [16] will be considered for this task as a first approach.
3.2. Evolutionary algorithm (the CHC approach)

Evolutionary algorithms in general and, GAs in particular, has been widely used to
derive FRBSs. In this work, we will consider the use of a specific GA to design the pro-
posed learning method, the CHC [27] algorithm. The CHC algorithm is a GA that
presents a good trade-off between exploration and exploitation, being a good choice in
problems with complex search spaces. This genetic model makes use of a mechanism of
‘‘selection of populations’’. M parents and their corresponding offspring are put together
to select the best M individuals to take part of the next population (with M being the pop-
ulation size).

To provoke diversity in the population the CHC approach makes use of an incest pre-
vention mechanism and a restarting approach, instead of the well-known mutation oper-
ator. This incest prevention mechanism is considered in order to apply the crossover
operator, i.e., two parents are crossed if their distance (considering an adequate metric)
divided by two is over a predetermined threshold, L. This threshold value is initialized
as the maximum possible distance between two individuals divided by four. Following
the original CHC scheme, L is decremented by one when there is no new individuals in
the population in one generation. Furthermore, the algorithm restarts the population
when L is below zero.
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Fig. 4. Scheme of the algorithm considering the CHC approach.
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Considering the learning scheme proposed in the previous subsection, the CHC algo-
rithm have to define both, the granularity of the linguistic partitions and the lateral
displacements of the involved labels. A global scheme of the proposed algorithm consid-
ering the CHC approach is shown in Fig. 4.

In the following, the components needed to design this process are explained. They are:
DB codification, chromosome evaluation, initial gene pool, crossover operator (together
with the considered incest prevention) and restarting approach.

3.3. DB codification

A double coding scheme (C = C1 + C2) to represent both parts, granularity and trans-
lation parameters, is considered:

• Number of labels (C1): This part is a vector of integer numbers with size N (being N the
number of system variables). The possible numbers of labels depend on the problem
being solved and are established by the system expert for each variable (usually the
set {3, . . . , 9} for the N variables):

C1 ¼ ðL1; . . . ; LNÞ:

• Lateral displacements (C2): This part is a vector of real numbers with size N * 9 (N vari-
ables with a maximum of nine linguistic labels per variable) in which the displacements
of the different labels are coded for each variable. Of course, if a chromosome does not
have the maximum number of labels in one of the variables, the space reserved for the
values of these labels is ignored in the evaluation process. In this way, the C2 part has
the following structure (where each gene is the tuning value of the corresponding label):

C2 ¼ a1
1; . . . ; a1

L1 ; . . . ; aN
1 ; . . . ; aN

LN

� �
:

3.4. Chromosome evaluation

As said, to evaluate a determined chromosome we will apply the well-known rule gen-
eration method of Wang and Mendel [16] on the DB coded by such chromosome. To
decode this DB, strong fuzzy partitions are defined considering the granularity values of
C1. After that, each MF is displaced to its new position considering the displacement
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values of C2. Once the whole KB is obtained and using the inference system presented in
Section 2.3, the mean square error (MSE) is computed and the following function is
minimized:

F C ¼ w1 �MSEþ w2 �NR;
where, NR is the number of rules of the obtained KB (to penalize a large number of rules),
w1 = 1 and w2 is computed from the MSE and the number of rules of the KB generated
from a DB considering the maximum number of labels (usually 9) and without considering
the displacement parameters,
w2 ¼ a � ðMSEmax-lab=NRmax-labÞ

with a being a weighting percentage given by the system expert that determines the trade-
off between accuracy and complexity. Values higher than 1.0 search for linguistic models
with few rules, and values lower than 1.0 search for linguistic models with high accuracy.
A good neutral choice is for example 1.0 (good accuracy and not too many rules).

3.5. Initial gene pool

The initial population will be comprised of two different parts (with the same number of
chromosomes):

• In the first part, each chromosome has the same random number of labels for all the
system variables, setting all the translation parameters to zero.

• In the second part, the only change is that each variable could have a different number
of labels.

Since CHC has no mutation operator, the translation parameters remain unchanged
and the most promising number of labels is obtained for each linguistic variable. The algo-
rithm works in this way until the first restarting is reached.

3.6. Crossover operator

Two different crossover operators are considered depending on the two parent’s scope
to obtain two offspring:

• When the parents encode different granularity levels in any variable, a crossover point is
randomly generated in C1 and the classical crossover operator is applied on this point in
both parts, C1 and C2 (exploration).

• When both parents have the same granularity level per variable, an operator based on the
concept of environments (the offspring are generated around one parent) is applied only
on the C2 part (exploitation). These kinds of operators present a good cooperation
when they are introduced within evolutionary models forcing the convergence by pres-
sure on the offspring (as the case of CHC). Particularly, we consider the Parent Centric
BLX (PCBLX) operator [28], which is based on the BLX-a. Fig. 5 depicts the behavior
of these kinds of operators.
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The PCBLX is described as follows. Let us assume that X = (x1� � �xn) and Y = (y1� � �yn),
ðxi; yi 2 ½ai; bi� � R; i ¼ 1; . . . ; nÞ, are two real-coded chromosomes that are going to be
crossed. The PCBLX operator generates the two following offspring:
– O1 = (o11� � �o1n), where o1i is a randomly (uniformly) chosen number from the inter-

val ½l1
i ; u

1
i �, with l1

i ¼ maxfai; xi � I ig, u1
i ¼ minfbi; xi þ I ig, and Ii = jxi � yij.

– O2 = (o21� � �o2n), where o2i is a randomly (uniformly) chosen number from the inter-
val ½l2

i ; u
2
i �, with l2

i ¼ maxfai; yi � I ig and u2
i ¼ minfbi; yi þ I ig.

On the other hand, the incest prevention mechanism will be only considered in order to
apply the PCBLX operator. In our case, two parents are crossed if their hamming distance
divided by 2 is over a predetermined threshold, L. Since we consider a real coding scheme
(the C2 part is going to be crossed), we have to transform each gene considering a Gray
Code (binary code) with a fixed number of bits per gene (BITSGENE), that is determined
by the system expert. In this way, the threshold value is initialized as:

L ¼ ð#GenesC2 � BITSGENEÞ=4:0:

Following the original CHC scheme, L is decremented by one when there are no new
individuals in the next generation. In order to avoid very slow convergence, in our case,
L will be also decremented by one when no improvement is achieved respect to the best
chromosome of the previous generation.

3.7. Restarting approach

Since no mutation is performed, to get away from local optima a restarting mechanism
is considered [27] when the threshold value L is lower than zero. In this case, all the chro-
mosomes set up their C1 parts to that of the best global solution, being the parameters of
their C2 parts generated at random within the interval [�0.5,0.5). Moreover, if the best
global solution had any change from the last restarting point, this is included in the pop-
ulation (the exploitation only continues while there is convergence). This operation mode
was initially proposed by the CHC authors as a possibility to improve the algorithm per-
formance when it is applied to solve some kinds of problems [27].

4. Two new ad hoc data-driven rule generation methods and their integration

in the evolutionary learning of the DB a priori

As said, the selection of the method considered for rule generation in the learning of the
DB a priori becomes an important aspect. This method should allow to the learning
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process to obtain accurate and, at the same time, compact KBs. Furthermore, since this
method is run each time a DB is evaluated, its computation time must be as short as pos-
sible. In this section, we discuss about the kinds of methods that could favor this behavior,
proposing two new ad hoc data-driven methods specifically designed for this task.

We can distinguish between two main possibilities to select this method:

(1) The first possibility is the use of advanced methods to obtain rules with the best accuracy.
In [29], the authors analyzed different ad hoc data-driven methods to propose a new
approach called mixed method (MM) that presents a better approximation ability. It
is based on the combination of a method guided by examples (the WM [16] algorithm)
and a method guided by fuzzy grid (the input space oriented strategy, ISS [30]), and
consists of adding rules to the linguistic model obtained by WM in the fuzzy input
subspaces that having examples do not still have a rule. Although at first, this
approach could seem a good choice, the use of these kinds of advanced methods
within our learning approach presents some important drawbacks that should be
taken into account. On the one hand, the computational time needed by these meth-
ods is higher than that of simpler methods. Moreover, the accuracy improvement
obtained by a more sophisticated approach is often achieved by increasing the final
number of rules (less interpretable models). On the other hand, some studies [4,5,8]
have shown that the system performance is much more sensitive to the learning of
the DB than to the composition of the RB. In this way, it is not clear that the deriva-
tion of a more elaborated RB favors the learning of better DB definitions respect to
other simpler RBs, since the RBs obtained could askew the learning of optimal DBs.

(2) The second possibility is the use of simpler and faster algorithms that favors the learning

of the MFs. These kinds of methods quickly obtain a small set of basic rules based on
the examples with the best covering degree in each fuzzy subspace. Therefore, the qual-
ity of the obtained rules directly depends on a successful DB definition to well cover
the examples that better represent the system behavior. This way to work leads the
DB learning a priori to obtain more optimal DBs and simpler RBs, i.e., more accurate
and compact KBs. Furthermore, the derivation of simpler models is a way to reduce
the overfitting, which eases the derivation of models also presenting a good general-
ization ability [31]. For these reasons, a basic and simple algorithm as WM performs
so well when it is integrated in a method based on the a priori learning of the DB [4,5].

Since our main aim is the learning of accurate but also compact FRBSs and the com-
putational time is also an important factor, we will focus our attention on methods fitting
with the second possibility, i.e., simple methods that favors and guide the learning of the
MFs. An example of these kinds of methods is the WM algorithm, considered in the pre-
vious section as a first approach to derive the RB. In the following subsections, we propose
two new simple ad hoc data-driven methods that allow the derivation of simpler models
maintaining the same or a similar accuracy. They are based on the selection of more gen-
eral consequents considering a group of the best covered examples and not only the one
with the best covering degree. The use of more general consequents also improves the gen-
eralization ability of the models so obtained, reducing the effect of noise points.

In any case, for the experiments and with comparative purposes, we will also consider
the MM algorithm by directly replacing the WM algorithm in the method proposed in
Section 3.
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4.1. Rule generation method based on averaged outputs (AV algorithm)

This method tries to obtain more general consequents by means of a weighted average
of the output of the examples matching the rule antecedents to a certain degree. The use of
an averaged output decrements the influence of noise points. The method is based on the
existence of a predefined DB and a set of input–output training data E = {e1, . . . ,el, . . . ,
em} with el ¼ ðxl

1; . . . ; xl
N�1; y

lÞ, l 2 {1, . . . ,m}, m being the data set size, and N � 1 being
the number of input variables. The RB is generated by means of the following steps:

• Initially the RB is empty.
• For each example el in E:
(1) Generate the rule antecedent with the labels best covering the input data

ðxl

1; . . . ; xl
N�1Þ.

(2) If there is not a rule with the same antecedent in the RB:
(a) Select the examples with a matching degree1 higher than d, where d 2 [0.5,1] is

a value provided by the system expert. If no examples can be selected, select all
the examples covered to some degree.

(b) Calculate the mean of the outputs of the selected examples weighted by their
matching degrees, M .

(c) Generate the rule consequent with the label best covering M .
(d) Add the obtained rule to the RB.
The d parameter determines how general or specific are the consequents obtained
respect to the covered examples. Since it depends on the problem being solved, the gran-
ularity and the MFs positions, this parameter should be obtained together with the DB in
the evolutionary process. At the end of this section we explain how the proposed methods
are included in the evolutionary DB learning a priori. This method is a bit slower than the
WM algorithm since for each rule antecedent, the matching of all the examples must be
computed.

4.2. Rule generation method based on modal consequents (MO algorithm)

This method tries to obtain more general consequents obtaining the modal labels of those
proposed by the examples matching the rule antecedents to a certain degree. Since noise
points usually appear with a small frequency, these kinds of points would not be considered
to compute the output. This method is also based on the existence of a predefined DB and a
set E of input–output training data. This algorithm consists of the following steps:

• Initially the RB is empty.
• For each example el in E:
ðxl
1; . . . ; xl

N�1Þ.

(1) Generate the rule antecedent with the labels best covering the input data

(2) If there is not a rule with the same antecedent in the RB:
1 Using the minimum t-norm as conjunctive operator on the obtained antecedent.
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(a) Select the examples with a matching degree1 higher than d, where d 2 [0.5,1] is a
value provided by the system expert.

(b) If any example has been selected:
• Calculate the label best covering the output of each selected example, count-

ing the number of times that each output label is obtained.
• Generate the rule consequent with the modal output label, i.e., the output

label more times obtained.
Else:

• Generate the rule consequent exactly as WM (that of the rule obtained by the
example with the highest covering degree on the N variables).
(c) Add the obtained rule to the RB.
As in the case of the previous method, the d parameter is obtained together with the DB
within the evolutionary process. This method can be implemented exactly as the WM algo-
rithm but counting the frequency of the consequents proposed and finally selecting the modal
labels. Therefore, it is faster than the AV algorithm and very similar to the WM algorithm.

4.3. Integration of the proposed methods in the evolutionary learning of KBs

To consider these algorithms within the proposed approach for the DB learning a pri-

ori, the WM algorithm is directly replaced by the AV or the MO algorithms and the d
parameter should be obtained together with the DB. In this way, the method proposed
in Section 3 must include the learning of the d parameter. In the following, we will only
explain the needed changes respect to this algorithm:

• Coding scheme – The coding scheme is modified by adding the new d parameter that will
be considered to obtain the RB:

C ¼ C1 þ C2 þ d:

• Initial gene pool – It works in the same way, but setting the d parameters at random in
[0.5,1].

• Crossover – Considering the crossover operator presented in Section 3, when the C1 part
is crossed, the d parameter is generated at random in [0.5,1]. When only the C2 part is
crossed, the PCBLX is also applied on the d parameters.

• Restarting approach – As in the original algorithm but setting up the d parameters at
random in [0.5,1]. If the best global solution had any change from the last restarting
point, this is included in the population considering the d part.

The d parameter is only needed to be considered in the rule generation process, but once
the learning process ends and a final 2-tuple represented KB is obtained, this parameter is
no more needed.

5. Experimental study

To evaluate the goodness of the proposed algorithms (DB learning a priori considering
WM, AV or MO algorithms), two real-world electrical energy distribution problems [32]
of different complexities are considered:
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• Estimating the length of low voltage lines in rural nuclei. This problem with only two
input variables involves a small search space (small complexity). However, it is still
an interesting problem since the system is strongly nonlinear and the available data is
limited to a low number of examples presenting noise. All of these drawbacks make
the modeling surface complicated indeed and, in this case, produce a strong overfitting
of the obtained models.

• Estimating the maintenance costs of medium voltage lines in a town. This problem con-
sists of four input variables and the available data set is comprised of a representative
number of well distributed examples. In this case, the learning methods are expected to
obtain a considerable number of rules. Therefore, this problem involves a larger search

space (high complexity).

To correctly solve both problems is a hard task since, in general, methods presenting a
good approximation ability do not show a good generalization in real problems (similar to
the first problem), since these kinds of methods can easily overfit the obtained models. In
this way, the proposed methods present a good approximation ability (specially in the sec-
ond problem) and at the same time a good generalization ability (specially in the first prob-
lem). In the following subsections these problems are introduced and solved to analyze the
behavior of the proposed methods.

5.1. Experimental set-up

A brief description of the studied methods is presented in the next three paragraphs
(Table 1 summarizes the main characteristics of these methods):

• The proposed methods are named as GLD-WM, GLD-AV and GLD-MO (presented
in Sections 3 and 4.3 respectively). The GLD-MM is considered for comparison pur-
poses directly replacing the WM algorithm by the MM method [29] in GLD-WM.

• The WM [16], COR [33] (with Best–Worst Ant System) and MM [29] algorithms are
considered as a simple and two advanced rule generation methods to quickly obtain
Table 1
Methods considered for the experimental study

Ref., Year Method Type of learning

[16], 1992 WM AHDD method
[29], 2004 MM Improved AHDD method based on WM
[33], 2005 COR Cooperative rules by using the BWAS algorithm
[13], 2004 WM + GL Global lateral tuning from WM

Methods considering DB learning a priori

[4], 2001 Gr-MF Gr. + MF. parameters + RB by WM
[5], 2001 GA-WM Gr. + Scaling factors + Domains + RB by WM
[8], 2004 GA-COR Gr. + Scaling factors + Domains + RB by COR

Proposed algorithms

— GLD-MM Gr. + Global lateral parameters + RB by MM
— GLD-WM Gr. + Global lateral parameters + RB by WM
— GLD-AV Gr. + Global lateral parameters + RB by AV
— GLD-MO Gr. + Global lateral parameters + RB by MO

AHDD: Ad hoc data-driven – BWAS: Best–Worst Ant System – Gr.: Granularity.
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RBs from a predefined DB. We also show the results of the WM + GL tuning method
[13] based on the linguistic 2-tuples representation. All of these methods will be consid-
ered as a reference since the proposed algorithms are based on some of them. The initial
linguistic partitions for these methods are comprised by five linguistic terms with uni-
formly distributed triangular MFs giving meaning to them.

• On the other hand, three methods to obtain a complete KB (DB learning a priori) are
considered for comparisons. The first one, Gr-WM [4], learns the granularity (number
of labels) of the fuzzy partitions and the MFs parameters (their three definition points).
GA-WM [5] and GA-COR [8] learn the granularity, scaling factors and the domains
(i.e., the variable domain or working range to perform the fuzzy partitioning) for each
system variable. These methods respectively obtain the corresponding RB by means of
the WM and COR algorithms.

To develop the different experiments we consider a 5-folder cross-validation model, i.e.,
five random partitions of data2 with a 20%, and the combination of four of them (80%) as
training and the remaining one as test. For each one of the five data partitions, the studied
methods have been run six times, showing for each problem the averaged results of a total
of 30 runs. Moreover, a t-test (with 95% confidence) was applied in order to ascertain if
differences in the performance of the proposed approaches are significant.

Finally, the following values have been considered for the parameters of each method:3

50 individuals, 50,000 evaluations, 30 bits per gene for the Gray codification and the set
{3, . . . , 9} as possible numbers of labels in all the system variables; 0.6 and 0.2 as crossover
and mutation probabilities in the case of the Gr-MF, GA-WM and GA-COR algorithms;
since the GA-COR algorithm spends too much time to derive the RB, the authors propose
the use of only 2000 evaluations in both problems. The a factor for the fitness function of
the GLD methods was set to 1 in both problems. Nevertheless, to obtain models with dif-
ferent levels of accuracy and simplicity, in the second problem (problem with more vari-
ables and rules) we also prove with a = 3.

5.2. Estimating the length of low voltage lines

This problem consists of relating the length of the low voltage line of a certain village (as
output variable) with the following two input variables: the radius of the village and the

number of users in the village. A complete description of this problem can be found in
[32]. To learn the different system models, we are provided with the measured line length,
the number of inhabitants and the mean distance from the center of the town to the three
furthest clients in a sample of 495 rural nuclei. Five partitions2 considering an 80% (396) in
training and a 20% (99) in test are considered for the experiments. The existing dependency
of the two input variables with the output variable in the training and test data sets of one
of the five partitions is shown in Fig. 6 (notice that they present strong non-linearities).
2 These data sets are available at: http://decsai.ugr.es/~casillas/fmlib/.
3 With these values we have tried to ease the comparisons selecting standard common parameters that work

well in most cases instead of searching very specific values for each method. Moreover, we have set a large number
of evaluations in order to allow the compared algorithms to achieve an appropriate convergence. No significant
changes were achieved by increasing that number of evaluations.

http://decsai.ugr.es/~casillas/fmlib/


Table 2
Results obtained in the line length estimation problem with parameter a = 1 for the fitness function

Method #R MSEtra rtra t-test MSEtst rtst t-test h:m:s

WM 12.4 234712 32073 + 242147 24473 + 00:00:00.01
MM 19.2 232974 32471 + 244763 23141 + 00:00:00.2
COR 22.0 180995 7794 + 220320 32492 + 00:00:04
WM + GL 12.4 166674 11480 + 189216 14743 + 00:01:03
Gr-MF 21.9 157083 5426 + 242913 59205 + 00:01:31
GA-WM 15.8 160441 6616 + 210444 46773 + 00:01:24
GA-COR 12.6 152313 3590 q 193052 25561 + 02:37:49
GLD-MM 11.2 160374 5020 + 182139 15531 + 00:01:47
GLD-WM 8.8 162295 4059 + 177507 16234 = 00:01:26
GLD-AV 8.7 159689 6324 + 172881 22449 = 00:01:54
GLD-MO 7.9 163696 4696 + 172765 18895 q 00:01:25
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Fig. 6. (a) (X1,Y) and (X2,Y) dependency in the training data; (b) (X1,Y) and (X2,Y) dependency in the test data.
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The results obtained in this problem by the analyzed methods are shown in Table 2,
where #R stands for the number of rules, MSEtra and MSEtst respectively for the averaged
error obtained over the training and test data, r for the standard deviation, h:m:s for the
averaged time of one run in an Intel Centrino (1.73 GHz, 512 MB of RAM) and where
t-test represents the following information:
q represents the best averaged result.
+ means that the best result has better behavior than the one in the corresponding row.
= denotes that the results are statistically equal according to the t-test.

Analyzing the results presented in Table 2 we can point out the following conclusions:

• Although the GLD-based methods do not obtain the best training errors, the trade-off
between approximation and generalization is pretty good in a problem with noise and
poor example data. Taking into account this fact and the high test errors of the remain-
ing methods, we could state that the remaining methods overfits while the GLD-based
methods really learns the system behavior. Furthermore, GLD-WM, GLD-AV and
GLD-MO obtain the models with the least number of rules.

• Respect to the use of the more advanced MM method, it slightly improves the training
error of WM at the cost of adding much more rules. Fortunately, the GLD approach
favors the derivation of more simple models, although GLD-MM still presents more
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rules and less generalization ability than the remaining GLD-based methods. Therefore,
in this problem, the use of this algorithm does not involves an advantage.

• We can see how the computational time of the rule derivation methods affects to the DB
learning a priori. The most clear case is that of the COR algorithm, multiplying the time
of WM per 400 and forcing the GA-COR to spend more than two hours to reach 2000
evaluations. In the following problem, this fact will be even more clear.

Fig. 7 depicts one of the 30 KBs obtained by GLD-MO in this problem. This figure
shows how small variations in the MFs lead to important improvements in the behavior
of the obtained FRBSs. In this way, the two input variables respectively present three
and four labels whose MFs are more or less uniformly distributed, which makes easy to
find their corresponding meanings for an expert. The output variable presents five labels
that are balanced to the left, representing a higher concentration of examples with small
outputs (see Fig. 6). However, since they are again more or less well distributed to the left
and to the right of the middle label, we can still easily name these labels.

5.3. Estimating the maintenance costs of medium voltage lines

This problem consists of relating the maintenance costs of the medium voltage line of a

certain town (as output variable) with the following four input variables: sum of the lengths

of all streets in the town, total area of the town, area that is occupied by buildings, and energy
supply to the town. A complete description of this problem can be found in [32]. In this case,
we will deal with estimations of minimum maintenance costs based on a model of the opti-
mal electrical network for a town in a sample of 1059 towns. Five partitions2 considering an
80% (847) in training and a 20% (212) in test are considered for the experiments.

The results obtained in this problem by the analyzed methods are shown in Table 3
(these kinds of table was described in the previous subsection). Analyzing the results pre-
sented in Table 3 we can stress the following facts:
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Table 3
Results obtained in the maintenance costs estimation problem

Method #R MSEtra rtra t-test MSEtst rtst t-test h:m:s

WM 65 56136 1498 + 56359 4686 + 00:00:00.02
MM 266 44958 1926 + 45598 6553 + 00:00:00.4
COR 41 39640 566 + 41683 1599 + 00:01:00
WM + GL 65 23064 1479 + 25654 2611 + 00:08:15
Gr-MF 93.9 16726 2403 + 18824 3651 + 00:07:53
GA-WM 51.1 23014 2143 + 24090 3667 + 00:10:26
GA-COR 17.8 20360 1561 + 22830 3259 + 36:45:41

Proposed methods with parameter a = 1 in the fitness function

GLD-MM 261.7 9617 1025 q 11825 2168 q 14:19:02
GLD-WM 57.5 10218 1044 = 12088 1972 = 00:09:10
GLD-AV 60.4 11856 2014 + 13604 2969 + 00:22:06
GLD-MO 54.9 10568 1017 = 12718 2001 = 00:09:20

Proposed methods with parameter a = 3 in the fitness function

GLD-MM 154.1 12093 1995 + 14020 2606 + 12:41:02
GLD-WM 41.2 13074 2040 + 15196 2757 + 00:09:23
GLD-AV 36.4 14868 2939 + 16885 4095 + 00:13:32
GLD-MO 34.4 13687 2108 + 16050 2095 + 00:07:55
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• In this problem, the drawbacks of the use of more advanced rule derivation methods are
even more obvious. In this case, the MM method presents significant improvements in
training and test respect to WM at the cost of obtaining an excessive number of rules
and increasing the computational time. This makes the GLD-MM method to take more
than 14/12 h to obtain a model with more than two/one hundred rules and without sig-
nificant improvements respect to the use of more simple models. On the other hand,
although we do not consider the COR algorithm in our methods, a second analysis could
be done about its use for the DB learning a priori, GA-COR. The main problem of COR
is the long computational time it takes to obtain a RB (approximately 3000 times more
than WM), which makes the GA-COR algorithm to take more than one day to reach a
total of 2000 evaluations. The main achievement, of this method respect to its homolo-
gous, GA-WM, is the derivation of a linguistic model with less number of rules. It is due
to the rule simplification performed by COR during the RB learning, which results in
linguistic models with too few rules and therefore, with no much better accuracy.

• The GLD-based methods proposed in this work show an important reduction of the
mean squared error over the training and test data in a problem with a large search
space. It is due to the use of the linguistic 2-tuple representation that reduces the search
space respect to the classical learning of MFs, easing the derivation of more optimal
models. We must take into account that the Gr-MF method theoretically could obtain
at least the same results than GLD-WM, since Gr-MF learns the three definition points
of the MFs, being a generalization of GLD-WM.

• GLD-AV and GLD-MO performs so well when we search for simpler models with a
similar accuracy to those obtained by GLD-WM or GLD-MM. Furthermore, the lin-
guistic models so obtained are interpretable in a high level since the original shapes of
the initial MFs are maintained. In this way, we can highlight the GLD-MO method
because of the low number of rules, the errors and the computational times obtained
in both problems.
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Fig. 8 presents the KB obtained by GLD-MO from one of the 30 runs performed in this
problem with a = 3. Analyzing this linguistic model, we can observe a similar DB config-
uration to that obtained in the previous problem. The MFs are more or less well distrib-
uted which allows us to easily give a meaning to the corresponding labels.

6. Conclusions

This work presents a new method for learning KBs by means of an a priori evolutionary
learning of the DB (granularity and translation parameters) that uses the linguistic
2-tuples rule representation model and a new inference system. Furthermore, two new
ad hoc data-driven rule generation methods have been proposed to analyze the influence
of them and other rule generation methods in the proposed learning approach. In the
following, we present our conclusions and further works:

• The used learning scheme together with the 2-tuples rule representation model and the
new inference system allows an important reduction of the search space that eases the
derivation of more precise and compact linguistic models.

• The use of simple rule derivation methods searching for basic rules better covering the
example data, favors the learning of a better DB and the derivation of RBs with a smal-
ler number of rules. Since the DB learning has more influence in the system behavior
than the RB composition, these kinds of methods also eases the derivation of more pre-
cise and compact models.
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• Moreover, since a global approach is considered and the shapes of the initial MFs are
preserved, the interpretability of the obtained models is maintained to a high level
respect to the classical learning of fuzzy systems.

The use of different a values to penalize the number of rules in the second problem has
demonstrated the existence of optimal models with different levels of accuracy and simplic-
ity. An interesting further work could be the use of multiobjective genetic algorithms to
obtain the pareto front with these solutions. In this way, we could easily select a solution
with the desired accuracy–interpretability trade-off considering two main objectives, the
training error and the number of rules.
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