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Abstract Exploiting the information in low quality data-

sets has been recently acknowledged as a new challenge in

Genetic Fuzzy Systems. Owing to this, in this paper we

discuss the basic principles that govern the extension of a

fuzzy rule based classifier to interval and fuzzy data. We

have also applied these principles to the genetic learning of

a simple cooperative-competitive algorithm, that becomes

the first example of a Genetic Fuzzy Classifier able to use

low quality data. Additionally, we introduce a benchmark,

comprising some synthetic samples and two real-world

problems that involve interval and fuzzy-valued data, that

can be used to assess future algorithms of the same kind.
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1 Introduction

Fuzzy data is the main object of study in fuzzy statistics

[3], but this kind of information is seldom considered in

Genetic Fuzzy Systems (GFS) [2, 6]. Indeed, GFSs obtain

Fuzzy Rule Based Systems (FRBS) from data, but the role

of fuzzy sets in a FRBS is to model vague asserts, using

fuzzy logic-based tools. Fuzzy logic techniques are not,

generally speaking, compatible with those fuzzy statistical

techniques used for modeling vague observations of vari-

ables. As a consequence of this, most GFSs can only

extract FRBS from crisp data [13].

To this we should add that there are many different

interpretations of the meaning of a fuzzy membership [11],

thus there are many different approaches for relating ‘‘fuzzy

data’’ and ‘‘low quality data’’. In this paper, we are choosing

a possibilistic interpretation, because it matches a large

amount of practical situations. This consists in understand-

ing a fuzzy membership function as a nested family of sets

(see Fig. 1), each one of them containing the true value of the

variable with a probability greater or equal than certain

bound [3]. For instance, it can be used to model datasets with

missing values (one interval that spans the whole range of the

variable), left and right censored data (the value is greater or

lower than a cutoff value, or it is between a couple of

bounds), compound data (each item comprises a disperse list

of values), mixes of punctual and set-valued measurements

(as produced by certain sensors, for instance GPS receivers)

etc. All these cases share in common a certain degree of

ignorance about the actual value of a variable, and assume

less prior knowledge than the standard model, thus we will

refer to all of them with the generic term ‘‘low quality data’’.

In this paper, we will devise an augmented GFS that can

operate with low quality (possibilistic) data. In our context,

this means that we want a classifier that is able to operate

when we cannot accurately observe all the properties of the

object. In the most simple case (interval-valued data) we

will perceive sets that contain these values. In the general

case, we will be given a nested family of sets, each one of

them containing the true value with a probability greater or

equal than its level.
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In the following sections we will study how this kind of

data can be routed through a FRBS to produce a set of

outputs, how can we measure the performance of a FRBS

with this data, and genetically optimize it. In Sect. 2 we

will propose a new reasoning method that is compatible

with the possibilistic view of the imprecision in the data. In

Sect. 3 we will review the algorithm that is being gen-

eralized, and propose different extensions for some of its

modules. In Sect. 4 we will apply the new algorithm to

different synthetic and real-world problems, and compare

the results to those of the crisp algorithm. In Sect. 5 we

conclude the paper and discuss future work in the subject.

2 An extension principle-based reasoning method

In this section we discuss how to compute the output of an

FRBS, given a vague input. At a first glance, this should

consist in computing the cylindrical extension of the input,

intersecting it with the fuzzy graph implicitely defined by

the FRBS, and projecting this intersection on the output

space.

However, this reasoning method does not preserve the

possibilistic meaning of the data. That is to say, it may

happen that, given an input that has a possibilistic meaning,

we come out with an output that has not that kind of

interpretation. In order to obtain meaningful results, in this

section we adapt a reasoning method, that was proposed in

[17] for fuzzy models, to the classification case.

Let us make clear the problem with the help of a par-

ticular case; consider a fuzzy classifier comprising M rules:

if ðx is eAiÞ then class is Ci; ð1Þ

and let us use the single-winner inference mechanism. In

the first place, let us suppose that we have a crisp

perception x of the properties of an object. Its class is,

therefore,

class(x) ¼ C
argmaxifeAiðxÞg

: ð2Þ

In the second place, let the object be imprecisely observed,

thus all our information is ‘‘x [ X.’’ If we apply the fuzzy

logic based approach mentioned before, the class of the

object is still a singleton:

class0ðXÞ ¼ C
argmaxifminfeAiðxÞjx2Xgg

ð3Þ

which is not the result we need. We want to obtain the set

of labels that follows:

class(X) ¼ fC
argmaxifeAiðxÞg

j x 2 Xg ð4Þ

or, in other words,

class(X) ¼ fclassðxÞ j x 2 Xg: ð5Þ

which is different than Eq. 3.

To solve this discrepancy, we propose to use the rea-

soning method that follows: Let X be the input space, let Nc

be the number of classes, thus K = {1, ..., Nc} is the output

space, and let f eAi ! Cigi¼1;...;M be a set of M fuzzy rules.

Recall that, given a crisp input x [ X, the most common

reasoning method for computing the output of a FRBS

takes two stages [2]:

1. An intermediate fuzzy set is composed:

foutðxÞðkÞ ¼ max
i¼1;...;M

minf eAiðxÞ; dk
Ci
g; ð6Þ

where dC_i
k = 1 if Ci = k, 0 else.

2. This intermediate fuzzy set is transformed in a crisp

value defuzðfoutðxÞÞ 2 K by means of a suitable

defuzzification operator. In classification problems,

the ‘‘maximum’’ defuzzification is mostly used. There-

fore, the value defuzðfoutðxÞÞ 2 K is often equivalent

to

defuzðfoutðxÞÞ ¼ arg max
k
ffoutðxÞðkÞg: ð7Þ

The extension to set valued inputs is as follows: Given

an input A � X (that, in our context, means ‘‘all we know

about the input is that it is in the set A’’),

1. We determine a family of intermediate fuzzy sets in

the universe FðKÞ; foutðAÞ 2 }ðFðKÞÞ—where

}ðFðKÞÞ is the set of all crisp subsets of FðKÞ—as

foutðAÞ ¼ ffoutðxÞ s. t. x 2 Ag ð8Þ

2. An element of }ðKÞ (that is to say, a set of crisp

outputs defuzðfoutðAÞÞ 2 }ðKÞ) is obtained, according

to the following definition:

defuzðfoutðAÞÞ ¼ fdefuzðfoutðxÞÞ s. t. x 2 Ag: ð9Þ

Lastly, given a fuzzy input eA 2 FðXÞ; we will assign it,

according to the Extension Principle (which is compatible

Fig. 1 Fuzzy representation of vague data. Left A missing value is

codified with an interval that spans the whole range of the variable, or

P([min, max]) B 1. Right A compound value (in this example, five

different measurements of the variable) can be described by a fuzzy

membership, that can also be understood as an upper probability.

Each a-cut contains the true value of the variable with probability at

least 1 - a
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with the possibilistic interpretation of fuzzy sets) a fuzzy

set computed as follows:

1. We determine an intermediate fuzzy set on the

universe FðKÞ; foutð eAÞ 2 FðFðKÞÞ; defined as

foutð eAÞð eBÞ ¼ supf eAðxÞ s. t. foutðxÞ ¼ eBg; 8 eB 2 FðKÞ
ð10Þ

2. An element of FðKÞ (that is to say, a fuzzy output)

defuzðfoutð eAÞÞ 2 FðKÞ is obtained as follows:

defuzðfoutð eAÞÞðkÞ ¼ supf eAðxÞ s. t. defuzðfoutðxÞÞ ¼ kg;
8k 2 K:

ð11Þ

Observe that the fuzzy set defuzðfoutð eAÞÞ is associated

to the nested family of sets fdefuzðfoutð eAaÞÞga2½0;1�; and

that explains the possibilistic interpretation of this

procedure.

3 Definition of the extended genetic fuzzy system

We have seen in the preceding section that an imprecise

knowledge about the input variables means that the output

of the FRBS will not be completely determined: it is a

fuzzy set of classes (or a crisp subset, if the input is set-

valued). From the foregoing it can be deduced that the

number of errors of the FRBS in the training data will be

also a set. The same happens if any other quality function is

used instead of the number of errors, i.e. likelihood, logistic

loss functions, etc. Let us use an example: we have a

classification system, defined by these rules:

if x\1 then class is A

if x 2 ½1; 2� then class is B

if x [ 2 then class is C

ð12Þ

and the input that follows:

x\1:8: ð13Þ

The output of the classifier is the set of classes {A, B}. If

the object being classified is of class C, we know that the

classifier has failed. Otherwise, we cannot know. None-

theless, we can use a set-valued variable ‘‘number of

errors’’, and state that the error of the classifier in that

example is the set {0, 1}.

It is remarked too that, if a point is labeled as ‘‘class {A,

B}’’ we are not stating that it belongs to both categories at

the same time (which is not an imprecise assert). We are

expressing that we are not sure about the class of the

object, i.e. we only know that it is not in class ‘‘C’’.

Therefore, if the output of the classifier is the set of classes

{A, B} and the point is also labeled as ‘‘class {A, B}’’, the

error in this point is still {0, 1} and not 0. Because of this,

in this paper, each rule will contain a single consequent.

We will not consider FRBS like, for instance,

if x\1 then class is fA;Bg
if x 2 ½1; 2� then class is B

if x [ 2 then class is C

ð14Þ

because, according to our interpretation, the first rule

necessarily will have a non-zero error at any example;

therefore, for any dataset we can conceive, we could find

an FRBS comprising only single-consequent rules whose

error is more specific than that of (14).

3.1 Crisp GFS

The GFS that we will generalize to vague data was intro-

duced in [7]. We have chosen this algorithm because of its

balance between simplicity and performance. In future

works we intend to extend the procedure described in this

section to more recent algorithms [16].

The pseudocode of this algorithm is shown in Fig. 2. It

can be seen that it depends on two functions: ‘‘assign-

Consequent’’ (line 6) and ‘‘assignFitness’’ (line 9). These

functions are also listed in Figs. 3 and 4.

Observe that this algorithm does not codify the conse-

quent of the fuzzy rules in the genetic individual neither we

are assigning weights to the rules. The function ‘‘assign-

Consequent’’ determines the class label that matches an

antecedent with a maximum confidence. The function

‘‘assignFitness,’’ in turn, determines the winner rule for

each object in the training set and increments the fitness of

the corresponding individual if its consequent matches the

class of the object.

3.2 Generalized GFS

Generalizing a GFS to imprecise data involves changes to

the inference mechanism, that we have discussed in Sect. 2,

Fig. 2 Outline of the GFS that will be generalized [7]. Each

chromosome codifies one rule. The fitness of the classifier is

distributed among the rules at each generation
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and also to the fitness function, as we have introduced in

the preceding paragraphs (see also [13] for a deeper

explanation). In the remainder of this subsection, we will

study how to alter these functions ‘‘assignConsequent’’ and

‘‘assignFitness’’. This comprises

1. new procedures to assign the consequents,

2. computing set-valued fitness functions, and

3. the genetic selection and replacement of the worst

individuals, including a short discussion about the

meaning of ‘‘best’’ and ‘‘worst’’ when the fitness is a

set-valued function.

3.2.1 Assignment of consequents

The assignment of consequents seen in Fig. 3 is extended

in Fig. 5. The original assigment consists in computing the

confidences of the rules ‘‘if (x is eA) then class is C’’ for all

the values of ‘‘C’’, then selecting the alternative with

maximum confidence. In this case, the confidence of a rule

is a set of values.

The operation ‘‘dominates’’ used in line 8 can have

different meanings, ranging from the strict dominance (A

dominates B iff a \ b for all a [ A, b [ B) [18] to other

definitions that induce a total order in the set of confi-

dences. Generally speaking, we have to select one of the

values in the set of nondominated confidences and use its

corresponding consequent. In this paper, we have used the

uniform dominance defined in [10], that induces a total

order and thus the set of nondominated consequents has

size 1. This issue is further discussed at the end of this

section.

3.2.2 Computation of fitness

We have mentioned at the beginning of this section that the

error of the FRBS at an imprecisely perceived object is an

interval or a fuzzy set. The number of errors of the whole

classifier can be obtained by adding these individual errors

with interval or fuzzy arithmetic operators.

Roughly speaking, estimating a classifier from data

requires a numerical technique that finds the minimum of

the classification error with respect to the free parameters

of the classifying system. In our case, this function is

interval-valued or fuzzy. But there are not many techniques

for optimizing interval-valued or fuzzy valued functions. In

the genetic algorithms field, the solutions are related to

precedence operators between imprecise values [8, 10, 18].

In previous works, we have jointly optimized a mix of crisp

and fuzzy objectives with genetic algorithms [14]. We have

also proposed a number of different algorithms for learning

regression models from low quality data and the fuzzy

representation mentioned before [12, 16, 17]. However, to

the best of our knowledge there have not been previous

GFSs where those principles have been applied to learn

classification problems.

Fig. 3 The consequent of a rule is not codified in the GA, but it is

assigned the most frequent class label, between those compatible with

the antecedent of the rule [7]

Fig. 4 The fitness of an individual is the number of examples that it

classifies correctly. Single-winner inference is used, thus at most one

rule changes its fitness when the rule base is evaluated in an example [7]

Fig. 5 If the examples are imprecise, we might not know the most

frequent class label—lines 5–12. In this paper we have used the

dominance proposed in [10] to reduce this set to one element
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In case that the ith object of the training set is perceived

through a crisp set, the output of the FRBS is a set of

classes:

CFRBSðXiÞ ¼ fC
argmaxjfeAjðxÞg

j x 2 Xig: ð15Þ

Accordingly, for a fuzzy value eXi the output is the fuzzy

subset of {1, ..., Nc} that follows:

eCFRBSðXiÞðkÞ ¼ maxfa j k 2 CFRBSð½Xi�aÞg ð16Þ

for k [ {1, ..., Nc }. It can be inferred that the theoretical

expression of the fitness function of the FRBS is:

ef ¼aeei ð17Þ

where eei is a fuzzy subset of {0, 1}, whose a-cuts are:

½eei�a ¼
1 CFRBSð½Xi�aÞ ¼ Ci and #ðCiÞ ¼ 1

0 CFRBSð½Xi�aÞ \ Ci ¼ ;
f0; 1g else

8

<

:

ð18Þ

In words, if the output of the FRBS is a single class label

that matches the class label of the example, this point

scores 1. If the set of classes emitted by the FRBS does not

intersect with that of the object, this point scores 0.

Otherwise, it scores the set {0, 1}.

The evaluation of this function is computationally very

expensive, and we will use an approximation, described in

Fig. 6 for interval-valued data. This algorithm computes an

interval of values of matching between each rule and the

input, then discards all rules that can not be the winner rule,

and approximates the output of the FRBS by the set of the

consequents of the non-discarded rules. This set includes

the theoretical output, but sometimes it also includes extra

class labels. In Fig. 7 we have also included a more

accurate approximation which is based on a sample of

values of the support of the input. This second approxi-

mation will be used in the next section to better determine

the quality of a classifier, but our learning will be guided by

the function in Fig. 6, because of its lower cost.

3.2.3 Genetic selection and replacement

There are two other parts in the original algorithm that

must be altered in order to use an imprecise fitness func-

tion: (a) the selection of the individuals in [7] is based on a

tournament, that depends on a total order on the set of

fitness values. And (b) the same happens with the removal

of the worst individuals. We leave for future works the

application of a multicriteria genetic algorithm similar to

those used in our previous works in regression modeling

[16, 17]. In both cases, we have used the uniform domi-

nance defined in [10] to impose such a total order. This

definition is recalled in the next subsection.

3.2.4 Precedence in imprecise fitness-based genetic

algorithms

In this section we detail how we define an ordering

between fitness values, to be used in the parts of the

mentioned algorithm. Let f1, f2 be the fitnesses of two

FRBSs. We will assume that f1 and f2 are unknown, but we

know two fuzzy sets ef1 and ef2 that describe them. Let h1

and h2 be the interval-valued expectations [4] of ef1 and ef2:

We want to determine whether one individual precedes

the other, thus we need a procedure that estimates whether

the probability of f1 \ f2 is greater than that of f1Cf2 (thus

h1 � h2) or not. We also want to find those cases where

there is no statistical evidence in h1 and h2 that makes us

prefer one of them (thus h1 kh2). Our approach can be

regarded as a PQI interval order [19], where there is a zone

Fig. 6 Generalization of the function ‘‘assignFitness’’ to imprecise

data. If the example is imprecisely perceived, there are three

ambiguities that must be resolved: a some different crisp values

compatible the same example might correspond to different winner

rules—lines 3–19, b these rules might have different consequent, thus

we do not know if the rule base fails in the example—lines 22–33 and

c we must assign credit to just one of these rules—lines 34 and 35
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of hesitation between strict difference and strict similarity.

We have considered two different scenarios:

1. Strong Dominance

Without further assumptions, when h1 and h2 are non-

disjoint intervals, we do not have evidence to prefer

one of them. Otherwise, the decision is trivial. This

criterion has been called strong dominance in [10].

2. Probabilistic Prior

We introduce prior knowledge about the probability

distribution of the fitness. If a joint probability P(f1, f2)

was known, comparing two individuals would be a

statistical decision problem. For instance, we can

decide that h1 � h2 when

Pðfðf1; f2Þ : f1\f2gÞ
Pðfðf1; f2Þ : f1� f2gÞ

[ 1: ð19Þ

For instance, in [18] it was assumed that P(f1, f2) was

uniform. This use of a uniform prior will be made clear in

the examples below.

Example 1 Let h1 = [1, 3] and h2 = [2, 4] two non-dis-

joint intervals. If we assume that P(f1, f2) is uniform in

[1, 3] 9 [2, 4] (see Fig. 8) we obtain

Pðfðf1; f2Þ : f1\f2gÞ
Pðfðf1; f2Þ : f1� f2gÞ

¼ 3:5=4

0:5=4
[ 1 ð20Þ

thus we can state that h1 � h2:

Example 2 Let h1 = [1, 5] and h2 = [1.9, 4] two non-

disjoint intervals. The application of the same principle

produces

Pðfðf1; f2Þ : f1\f2gÞ
Pðfðf1; f2Þ : f1� f2gÞ

¼ 4:095

4:305
\1 ð21Þ

therefore h2 � h1:

The uniform prior defines a total order in the population,

since every pair of intervals is comparable. We may

question the consistency of this order, though. In the last

example, there might be situations where a fitness [1, 5]

could be prefered to [1.9, 4], and it is also reasonable to

state that these two intervals cannot be compared. We have

proposed a more complex ordering in [17], albeit we have

decided not to use it in this initial algorithm for simplifying

our explanation.

4 Numerical results

This section contains a numerical analysis of the general-

ized algorithm. To the best of our knowledge, there are not

previous publications with compared results of machine

learning algorithms over vague datasets. Therefore, we

have collected our own data, and propose to use the

Fig. 7 Other generalization of the function ‘‘assignFitness’’ to

interval-valued data. This function is computationally too expensive

for being used as a fitness function; it will be used instead for

obtaining better estimations of the train and test errors of the final rule

bases. Lines 14–18 deal with the case where an object has imprecise

output, i.e. ‘‘the class is A or C’’; otherwise, the value of the variable

‘‘score’’ is crisp

Fig. 8 Graphical representation of the example 2, showing that

½1; 3��½2; 4�
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datasets that will be described in this section for future

developments in the field. We have considered three cat-

egories of problems:

1. Synthetic datasets: we have generated a sample of data

with Gaussian distribution and known Bayesian error.

To this data we have added different amounts of

observation error.

2. Realistic problems: a dataset comprising actual mea-

surements for a problem whose statistical distribution

is not known, but knowing the optimal solution.

3. Real-world problems: datasets originated in open

problems of medical diagnosis and high performance

athletics, whose optimal solution neither the statistical

distribution of the data nor the amount of observation

error are known.

Additionally, we have also tested the new algorithm

over some standard, crisp datasets. This is intended for

checking that the extended algorithm has the same per-

formance as the original version in crisp problems.

4.1 Settings

All the experiments have been run with a population size of

100, probabilities of crossover and mutation of 0.9 and 0.1,

respectively, and limited to 200 generations. The fuzzy

partitions of the labels are uniform and their size is 3,

except when mentioned otherwise. We have used the pre-

cedence criteria called ‘Probabilistic Prior’ in Sect. 3.2.4

for comparing fitness values and also for assigning the

consequents to the rules. All the datasets used in this paper

will be made freely available in the website of the KEEL

project: http://www.keel.es.

4.1.1 Compared results between crisp and low quality

data-based algorithms

In this section, we include compared results between crisp

and low quality data-based algorithms. We are not aware of

previous works in the field, and this comparison is difficult,

as it involves a method for removing the observation error

from the data. This is necessarily an arbitrary choice.

Depending on the problem, the same prior assumptions about

the probability distribution of the data can be effective or not.

In this section we have applied the following rules when

comparing crisp and interval-valued data:

– If the imprecision is in the input, each interval has been

replaced by its midpoint. For instance, a vague example

(X = [1, 3], C = A) is converted into (x = 2, C = A).

– If the imprecision is in the output, each sample has

been replicated for the different alternatives. Each

replication is assigned a degree of importance such that

the contribution of the example to the total fitness is not

multiplied by the number of replicas. For instance, an

example (x = 2, C = {A, B}) is converted in two

examples (x = 2, C = A) and (x = 2, C = B), and

each one of them is assigned an importance 0.5. This

requires a small change of the original algorithm, which

is shown in Figs. 9 and 10.

For removing the imprecision in fuzzy data, we have

replaced each fuzzy set by its modal point. For instance, a

vague example ð eX ¼ ½1; 2; 4�;C ¼ AÞ (where [1;2;4] is a

triangular fuzzy set with support [1, 4] and modal point 2)

is defuzzified in the crisp value (x = 2, C = A).

4.2 Experimentation with crisp datasets

In the first place, we have solved some crisp datasets, that

have been included for checking how the algorithm per-

forms on crisp data. The results show that there are not

Fig. 9 The original algorithm in [7] is altered as shown in line 2, so

that is able to learn from a database where each example has a

fractional degree of importance ‘‘x(example)’’

Fig. 10 The fitness of an individual is the number of examples that it

classifies correctly. Single-winner inference is used, thus at most one

rule changes its fitness when the rule base is evaluated in an example.

The algorithm in [7] has also been altered (see line 12) for dealing

with weighted examples
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differences between the original algorithm in [7] and the

generalized version proposed here when the datasets are

crisp. We have included these experiments in Table 1.

4.3 Experimentation with synthetic datasets

The dataset that we have called ‘‘Gaussian’’ comprises 699

points of two classes. The distribution of both classes is

bidimensional Gaussian, with unity covariance matrix,

and centered in (0, 0) and (3, 0), respectively. To this

data we have added interval-valued imprecision of sizes

b = 0.03, 0.05, 0.1, 0.2, 0.5.

A 10cv experimental design was applied, and the mean

values of the test errors are shown in Table 2 and Fig. 11.

The training error has been also included, to show the

differences between the approximation of the fitness

function seen before and the exhaustive computation that

has been used to compute the test error. Observe that the

approximate error computed by the fitness function is less

specific than the actual error, and the difference is relevant

when the observation error is high (b = 0.2 and b = 0.5),

nevertheless it still guides the evolution correctly.

4.4 Experimentation with realistic datasets

The dataset ‘‘Screws’’ comprises 21 objects of three dif-

ferent classes. Each object has two features, weight and

length. If all the measurements were accurate, this problem

could have been solved without error. There is no ambi-

guity in the class labels, and each feature is an interval.

Since the misclassification rate is entirely originated in the

observation error, the results shown in Table 3 indicate that

the algorithm proposed here has exploited better the

information contained in the imprecise data than the crisp

algorithm.

4.5 Experimentation with real world datasets

In this section we will describe two different real-world

problems. The first one is a medical diagnosis problem, and

the second one is related to the composition of teams in

Table 1 Classification error in some crisp benchmarks, where the

imprecise fitness function is the same as the crisp fitness function

Dataset Crisp Low quality

Train Test Train Test

Pima 0.253 0.283 [0.254,0.258] [0.271,0.278]

Glass 0.332 0.356 [0.328,0.329] [0.356,0.356]

Haberman 0.241 0.261 [0.232,0.243] [0.254,0.261]

The results of ‘‘crisp’’ and ‘‘low quality’’ columns are similar

Table 2 Results of the extended GFS in the synthetic dataset ‘‘Gauss’’ for crisp data (‘Crisp’ columns) and different degrees of observation error

(‘Low Quality’ columns)

b Crisp Low quality

Theoretical Train Test Approx. train Exh. test Exh. train

0 0.084 0.083 0.086 [0.086,0.086] [0.082,0.082] [0.086,0.086]

0.03 [0.076,0.091] [0.083,0.094] [0.047,0.086]

0.05 [0.071,0.094] [0.081,0.098] [0.075,0.089]

0.1 [0.076,0,093] [0.068,0.104] [0.070,0.103]

0.2 [0.075,0.089] [0.055,0.128] [0.052,0.116]

0.5 [0.014,0.225] [0.022,0.179] [0.022,0.183]

Training error for low quality data has been computed twice, with a slow, precise algorithm (‘Exhaustive Train’) or a fast approximation

(‘Approximate Train’) (see Fig. 7). The approximate fitness function (see Fig. 6) has guided the evolution. The test error is always computed

with the precise algorithm (‘Exhaustive test’). The approximate error is less specific than the actual error, and the difference is relevant when the

observation error is high (b = 0.2 and b = 0.5), nevertheless it still converges to a good FRBS

CTrain CTest ITrain ITest

0

0.2

0.4

0.6

0.8

Screws

Fig. 11 Boxplots illustrating the error of crisp (columns ‘CTrain’ and

‘CTest’) and extended GFS (columns ‘ITrain’ and ‘ITest’) in the

problem ‘‘Screws’’
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high performance athletics. Both problems are open; we do

not know the best attainable error with a Genetic Fuzzy

Classifier.

4.5.1 Diagnosis of dyslexia

Dyslexia is a learning disability in people with normal

intellectual coefficient, and without further physical or

psychological problems explaining such disability. It has

been estimated that between 4 and 5% of schoolchildren

have dislexia, with reading and writing problems [1]. The

average number of children in a Spanish classroom is 25,

therefore most of them have dyslexic children. Dyslexia

may become apparent in early childhood, with difficulty

putting together sentences and a family history. Recogni-

tion of the problem is very important in order to give the

infant an appropriate teaching.

Using Soft Computing techniques for diagnosing dys-

lexia seems to us a natural choice, because of the properties

of our data (linguistic terms, and vague measurements). As

a matter of fact, there are many references where fuzzy

techniques were used to learn medical diagnosis models

from data. In particular, in [5] and [9], fuzzy techniques

have been used in the diagnosis of disabilities in language.

However, in all of the preceding works, the data was crisp

or categorical. Instead, most of our measurements (see

Table 4) are not crisp. Some of our responses are linguistic

(‘‘low’’, ‘‘high’’), others are subjective (like the ‘‘square-

ness’’ of a hand-drawn shape—see Fig. 12) or interval

valued (f.e. a dyslexia degree ‘‘between 2 and 4’’). Lastly, a

high percentage of cases have missing values. None of the

preceding approaches are directly applicable to the prob-

lem at hand.

The dataset used in this section is called ‘‘Dyslexia-12’’.

It has 65 objects, 4 classes and 12 features. This is a

selection of the original dataset described in [15], where

the 12 most relevant variables have been hand-picked by a

psychologist. There are imprecision in both the input and

the output. The theoretical error is unknown.

We have used a 10cv design, and the boxplots of the

compared results, in both train and test sets, are depicted in

Fig. 13. Observe that the boxplots of the imprecise

experiments are not standard. We propose using a box

showing the 75% of the maximum and 25% percentile of

the minimum fitness (thus the box displays at least the 50%

of data) and also drawing two marks inside the box,

because the median of the data is an interval. In Fig. 14 the

ranges and means of all repetitions of the learning are

shown, for both the crisp and the imprecise versions of the

algorithm. The upper bound of the mean imprecise fitness

is consistently lower than the mean of the crisp fitness.

4.5.2 High performance athletics

The score of an athletics team is the sum of the individual

scores of the athletes in the different events. It is the

coach’s responsibility to balance the capabilities of the

Table 3 Results of the generalized GFS for the imprecise datasets

‘‘Screws’’

Crisp Low quality

Dataset Train Test Approx. train Exh. test Exh. train

Screws 0.133 0.427 [0.068,0.106] [0.377,0.377] [0.096,0.096]

The algorithm in this paper has exploited the low quality information

better than the crisp algorithm

Table 4 Categories of the tests currently applied in Spanish schools

for detecting dyslexia in children between 5 and 8 years

Category Test Description

Verbal

comprehension

BAPAE Vocabulary

BADIG Verbal orders

BOEHM Basic concepts

Logic reasoning RAVEN Color

BADIG Visual memory

Sensory-motor

skills

BENDER Visual-motor coordination

BADIG Perception of shapes

BAPAE Spatial relations, shapes,

orientation

STAMBACK Auditive perception, rhythm

HARRIS/HPL Laterality, pronunciation

GOODENOUGHT Spatial orientation, body

scheme

Reading-writing TALE Analysis of reading and

writing

Fig. 12 Example of some of Bender’s tests for detecting dyslexia.

Upper part The angles of the shape in the right are qualified by a list

of adjectives that can contain the words ‘‘right,’’ ‘‘incoherent,’’

‘‘acceptable,’’ ‘‘regular’’ and ‘‘extra.’’ Middle and lower part: The

relative position between the figures can be ‘‘right and separated,’’

‘‘right and touching,’’ ‘‘intersecting’’, etc
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different athletes in order to maximize the score with a

team according to the regulations. In this practical

application, an algorithm is used for choosing the best

team. The algorithm makes use of the expected marks of

the athletes at each event, and also of the confidence

degrees in the achievement of these marks. These

expected marks are determined by the trainer according to

the past performance of the athlete, a set of indicators that

are described in this section and, optionally, the marks of

rival teams. The objective is to choose the subset of

athletes that will get a given score, with the highest

confidence.

The objective of the FRBS that is evaluated in this

section is to determine whether an athlete will improve a

certain mark, in two different events: long jump and

100 m. The variables that define each problem are as

follows:

1. There are four indicators in long jump that are used to

predict whether an athlete will pass a given threshold

[20]: the ratio between the weight and the height, the

maximum speed in the 40 m race and the tests of

central (abdominal) muscles and lower extremities.

The first two indicators are determined by the coach,

who was allowed to use numbers, intervals or linguis-

tic values (fuzzy intervals) at his convenience. The two

last tests are repeated three times, and produce

numbers. The abdominal muscle test consists in

counting how many flexion movements the athlete

can repeat in a minute. Lastly, the lower extremities

test measures how much the athlete can stretch.

2. There are also four indicators in the 100 m race: the

ratio between weight and height, the reaction time, the

starting or 20 m speed, and the maximum or 40 m

speed. We have collected two different databases for

this problem. In the first database, three different

people measure the actual reaction time, starting and

maximum speed of the athletes. These three measure-

ments are joined to form an imprecise value. On the

contrary, in the second database the trainer has graded

each speed and time with a mark between 0 and 10. He

was allowed to express his grades with numbers,

intervals or linguistic values. This second database has

a high subjective component; it serves to assess the

expert knowledge of the trainer about the athletes, by

comparing this results with the actual measurements.

CTrain CTest ITrain ITest
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0.6

0.8

Fig. 13 Boxplots illustrating the results of crisp (columns ‘CTrain’

and ‘CTest’) and extended GFS (columns ‘ITrain’ and ‘ITest’) in the

problem ‘‘dyslexia-12’’, with 4 labels/partition
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Fig. 14 Compared evolution of crisp (left) and imprecise GFS (right)
in the dataset ‘‘dyslexia-12’’. The minimum, mean and maximum

classification error at every generation are shown, for both the crisp

and the imprecise versions of the algorithm. The upper bound of the

imprecise fitness is consistently lower than the crisp fitness
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Finally, the datasets that are used in this application are:

1. Dataset ‘‘Long-4’’: This dataset is used to predict

whether an athlete will improve certain threshold in

the long jump, given the indicators mentioned before.

We have measured 25 athletes, thus the set has 25

instances, 4 features, 2 classes, no missing values. All

the features, and also the output variable, are interval-

valued.

2. Dataset ‘‘100ml-4-I’’: Used for predicting whether a

mark in the 100 metres sprint race is being achieved.

Actual measurements are taken by three observers, and

are combined into the smallest interval that contains

them. 25 instances, 4 features, 2 classes, no missing

data. All input and output variables are intervals.

3. Dataset ‘‘100ml-4-P’’: Same dataset as ‘‘100ml-4-I’’,

but the measurements have been replaced by the

subjective grade the trainer has assigned to each

indicator (i.e. ‘‘reaction time is low’’ instead of

‘‘reaction time is 0.1 seg’’).

We have compared the performance of the generalized

algorithm to that of the original crisp algorithm, as men-

tioned before. We have used a 10cv design for all datasets.

The boxplots with all the results are shown in Fig. 15.

Observe that the boxplots of the imprecise experiments are

not standard, as before. We propose to use an extended

boxplot that can describe a sample of interval data. We will

be using a box showing the upper bound of the 75% per-

centile of the maximum and the lower bound of the 25%

percentile of the minimum fitness (thus the box displays at

least the 50% of data). The also interval-valued median is

drawn with two marks inside this box. In addition, the

numerical values of the classification error have also been

included in Tables 5 and 6.

The results are promising in all the experiments. We

expected that the extra freedom for the coach has when he

is allowed to use ranges of values and linguistic terms

instead of numbers would allow us to capture better his

expertise, and the results seem to confirm this intuition

(Table 6, column ‘‘Test, Low Quality’’).

5 Concluding remarks

Extending a GFS to imprecise data in classification

problems is based on the use of an interval or fuzzy

valued fitness function. Most GFSs can be extended to

low quality data if some changes are made in their rea-

soning method, and the genetic algorithm can deal with

an imprecisely known fitness function. We have shown in

detail how to apply this changes to a simple GCCL-type

algorithm, and evaluated it with some synthetic, realistic

and real-world benchmarks. The numerical results are as

expected for an elementary algorithm like this; there is

room for improvement and future works will address

more complex GFSs that are based on a multicriteria

fitness function.
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Table 5 Results of the generalized GFS for the imprecise datasets

‘‘Dyslexia-12’’ with 4 and 5 labels/variable

Crisp Low quality

Dataset Train Test Approx. train Exh. test

Dyslexia-12 (4 labels) 0.541 0.657 [0.144,0.335] [0.421,0.558]

Dyslexia-12 (5 labels) 0.672 0.694 [0.155,0.355] [0.490,0.609]

Table 6 Expected classification error of the generalized GFS for the

imprecise datasets ‘‘Long-4’’, ‘‘100ml-4-P’’ and ‘‘100ml-4-I’’

Crisp Low quality

Dataset Train Test Train Test

Long-4 (5 labels) 0.327 0.544 [0.0,0.279] [0.349,0.616]

100ml-4-P (5 labels) 0.288 0.419 [0.076,0.320] [0.17,0.406]

100ml-4-I (5 labels) 0.259 0.384 [0.089,0.346] [0.189,0.476]
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Fig. 15 Boxplots illustrating the classification error of crisp and extended GFS in the high performance athletics problem. From left to right,:
Problems ‘‘100ml-4-I’’, ‘‘Long-4’’, and ‘‘100ml-4-P’’
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