
ARTICLE IN PRESS

Pattern Recognition 43 (2010) 2082–2105
Contents lists available at ScienceDirect
Pattern Recognition
0031-32

doi:10.1

$This
� Corr

E-m

(S. Gar
1 Th
journal homepage: www.elsevier.com/locate/pr
IFS-CoCo: Instance and feature selection based on cooperative coevolution
with nearest neighbor rule$
Joaquı́n Derrac a,�,1, Salvador Garcı́a b, Francisco Herrera a

a Department of Computer Science and Artificial Intelligence, CITIC-UGR (Research Center on Information and Communications Technology), University of Granada, 18071 Granada,

Spain
b Department of Computer Science. University of Jaén, 23071 Jaén, Spain
a r t i c l e i n f o

Article history:

Received 25 June 2009

Received in revised form

6 December 2009

Accepted 17 December 2009

Keywords:

Evolutionary algorithms

Feature selection

Instance selection

Cooperative coevolution

Nearest neighbor
03/$ - see front matter & 2009 Elsevier Ltd. A

016/j.patcog.2009.12.012

work was supported by Project TIN2008-06

esponding author. Tel.: +34 958 240598; fax

ail addresses: jderrac@decsai.ugr.es (J. Derrac

cı́a), herrera@decsai.ugr.es (F. Herrera).

e author holds a research scholarship from t
a b s t r a c t

Feature and instance selection are two effective data reduction processes which can be applied to

classification tasks obtaining promising results. Although both processes are defined separately, it is

possible to apply them simultaneously.

This paper proposes an evolutionary model to perform feature and instance selection in nearest

neighbor classification. It is based on cooperative coevolution, which has been applied to many

computational problems with great success.

The proposed approach is compared with a wide range of evolutionary feature and instance

selection methods for classification. The results contrasted through non-parametric statistical tests

show that our model outperforms previously proposed evolutionary approaches for performing data

reduction processes in combination with the nearest neighbor rule.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The designing of classifiers can be considered one of the main
processes inside the data mining field. Due to the large amount of
data generated in many research areas, ranging from human
genome sequenciation projects to development of new technical
prototypes in industry, the use of machine learning algorithms
has become a challenging task [1,2].

The employment of data reduction [3] techniques in the first
phases of the construction of classifiers is a necessity in most data
mining applications nowadays. The main objectives of these
techniques are to increase the efficiency of the classification
process (by removing redundant instances and features or
discretizing variables) and to reduce the classification error rate
(by removing noisy instances and features). Although data
reduction techniques were originally designed to work with
standard data, it is not difficult to find applications of data
reduction in other fields, e.g. dealing with multimedia data [4] or
graphics [5]. Data reduction is also used to optimize dissimilarity-
based classification [6], to obtain high quality rules in high-
dimensional subgroup discovery problems [7] and to enhancing
ll rights reserved.

681-C06-01.

: +34 958 243317.

), sglopez@ujaen.es

he University of Granada.
the data quality based on complexity measures as the computa-
tion of volume-based inter-class overlap measures [8].

One of the most well known classifiers is the k-Nearest
Neighbors classifier (k-NN) [9]. It has been applied to many
classification problems [10]. It is a non-parametric classifier
which does not build a model in its training phase. Instead of
using a model, it is based on the instances contained in the
training set. Thus, the effectiveness of the classification process
relies on the quality of the training data. Also, it is important to
note that its main drawback is its relative inefficiency as the size
of the problem grows, regarding both the number of examples in
the data set and the number of attributes which will be used in
the computation of its similarity functions (distances).

For this contribution, two well-known techniques of data
reduction will be employed: instance selection (IS) [11] and
feature selection (FS) [12]. The objective of IS is to select the most
appropriate subset of instances (prototypes) from the initial data,
trying simultaneously to increase the accuracy of the classifica-
tion process and decrease the amount of data employed in it. FS
works in a similar way, selecting the most appropriate subset of
features to describe the data. Both are really effective not only in
reducing the size of the initial data set, but also in filtrating and
cleaning noisy data. In the field of machine learning, we can find
interesting approaches [11,12], some of them trying to enhance
the results obtained by the k-NN classifier [13].

On the other hand, the research done in evolutionary
computation (EC) [14] has contributed numerous techniques
inspired by natural evolution, which are able to manage search

www.elsevier.com/pr
dx.doi.org/10.1016/j.patcog.2009.12.012
mailto:jderrac@decsai.ugr.es
mailto:sglopez@ujaen.es
mailto:sglopez@ujaen.es
mailto:herrera@decsai.ugr.es

ARTICLE IN PRESS

J. Derrac et al. / Pattern Recognition 43 (2010) 2082–2105 2083
problems like IS [13,15,16] and FS [17–19]. Furthermore, Evolu-
tionary Algorithms (EAs) have been successfully used in data
mining problems, showing that they are a very useful tool to
perform this task [20–22].

A more specialized approach can be found in coevolution [23],
a specialized trend of EAs. It works by managing two or more
populations (also called species) simultaneously, allowing inter-
actions among its individuals. This approach allows splitting the
problem into different parts, employing a population to handle
each one separately, but joining its individuals to evaluate the
solutions obtained. Recently, the coevolution model has shown
some interesting characteristics [24], being successfully applied to
different problems [25,26].

Our proposal defines a cooperative coevolution model to tackle
the IS and FS problems. In the instance and feature selection based
on the cooperative coevolution (IFS-CoCo) model, both processes
are applied simultaneously to the initial data set, aiming to obtain
a suitable training set to perform the classification process.

IFS-CoCo is composed of three populations. The individuals of
each one define a different type of baseline classifier, depending
on each population’s characteristics. Thus, each population is
focused on performing a basic data reduction task: The first
population performs an IS process, the second population per-
forms a FS process, and the third population performs simulta-
neously both IS and FS processes. With the employment of
coevolution, this approach is intended to improve the results of
data reduction techniques when applied to classification tasks.

In this work, IFS-CoCo will be fully described, from its
theoretical background to the details of its implementation.
Moreover, a wide range of classification problems will be
employed to perform a comparison between IFS-CoCo and other
models, in order to highlight the benefits of the use of
coevolution. We will employ a Wilcoxon signed-ranks test [27]
to contrast the results obtained.

The rest of the paper is organized as follows: Section 2
summarizes the existing work in the related areas. Section 3
describes the cooperative coevolutive model proposed. Section 4
deals with the experimental framework employed. Section 5
presents the analysis of results. Section 6 shows the conclusions
arrived at. Finally, two appendices are provided to extend the
details of the experimental study performed. Appendix A
describes the main characteristics of the comparison algorithms
employed. Appendix B shows the complete results obtained.
2. Background: data reduction and coevolutionary algorithms

This section discusses the main topics in the background in
which our contribution is based. Section 2.1 describes in depth IS
and FS as data reduction techniques. Section 2.2 shows some
examples of how EAs can be applied to data reduction problems.
Finally, Section 2.3 highlights the main characteristics of coevolu-
tionary algorithms.

2.1. Data reduction techniques

Two well-known data reduction techniques are going to be
reviewed in this subsection: IS and FS. In addition, an analysis of
simultaneous instance and feature selection (IFS) will be pro-
vided. This will cover all the background needed to understand
the data reduction processes performed by IFS-CoCo.

2.1.1. Instance selection

IS is one of the main data reduction techniques. In IS, the goal
is to isolate the smallest set of instances which enable a data
mining algorithm to predict the class of a query instance with the
same quality as the initial data set [11]. By minimizing the data
set size, it is possible to reduce the space complexity and decrease
the computational cost of the data mining algorithms that will be
applied later, improving their generalization capabilities through
the elimination of noise.

More specifically, IS can be defined as follows: Let Xp be an
instance where Xp ¼ ðXp1;Xp2; . . . ;Xpm;XpcÞ, with Xp belonging to a
class c given by Xpc , and a m-dimensional space in which Xpi is the
value of the i-th feature of the p-th sample. Then, let us assume
that there is a training set TR which consists of N instances Xp and
a test set TS composed of T instances Xp. Let SDTR be the subset of
selected samples that resulted from the execution of a IS
algorithm, then we classify a new pattern T from TS by a data
mining algorithm acting over the instances of S.

IS methods can be divided into two categories: prototype
selection (PS) methods and training set selection (TSS) methods.
PS methods [28] are IS methods which expect to find training sets
offering the best classification accuracy and reduction rates by
using instance based classifiers which consider a certain similarity
or distance measure (e.g., k-NN). On the other hand, TSS methods
are known as the application of IS methods over the training set to
build any predictive model (e.g. decision trees, neural networks
[29,30]).

In this work, we will focus our attention on PS, because we will
employ the nearest neighbor rule as the baseline rule to perform
the classification process. More concretely, we will employ the
1-NN rule. Wilson and Martinez, in [31], suggest that the
determination of the k value in the k-NN classifier may depend
on the proposal of the IS algorithm. Setting k41 decreases the
sensitivity of the algorithm to noise and tends to smooth the
decision boundaries. In some IS algorithms, a value k41 may be
convenient, when the interest lies in protecting the classification
task of noisy instances. Therefore, Wilson et al states that it may
be appropriate to find a value of k to use during the reduction
process, and then redetermine the best value of k in the
classification task. For this contribution, we have employed
the value k¼ 1, given that EAs need to have the greatest
possible sensitivity to noise during the reduction process. In this
manner, an evolutionary IS algorithm could better detect
the noisy instances and the redundant ones in order to find a
subset of instances adapted to the simplest method of nearest
neighbors.

In the data mining field many approaches of PS have been
developed, ranging from classical approaches such as CNN [32] or
ENN [33] to recent approaches such as SSMA [15], HMNEI [34] or
PSC [35]. A wide number of reviews of PS methods can be found in
the literature [36–38,31].
2.1.2. Feature selection

FS is another of the main data reduction techniques. In FS, the
goal is to select the most appropriate subset of features from the
initial data set. It aims to eliminate irrelevant and/or redundant
features to obtain a simple and accurate classification system
[12].

FS can be defined as follows: Let Xp be an instance where
Xp ¼ ðXp1;Xp2; . . . ;Xpm;XpcÞ, with Xp belonging to a class c given by
Xpc , and an m-dimensional space in which Xpi is the value of the
i-th feature of the p-th sample. Then let us assume that there is a
training set TR whose instances Xp are defined by M features, and
a test set TS. Let PDM be the subset of selected features that
resulted from the execution of a FS algorithm, then we classify a
new pattern from TS by a data mining algorithm acting over TR,
employing for reference only the features selected in P.

ARTICLE IN PRESS

J. Derrac et al. / Pattern Recognition 43 (2010) 2082–21052084
There are three main categories in which FS methods can be
classified:
�
 Wrapper methods, where the selection criterion is dependent
on the learning algorithm, being a part of the fitness function
[39].

�
 Filtering methods, where the selection criterion is independent

of the learning algorithm (separability measures are employed
to guide the selection) [40].

�
 Embedded methods, where the search for an optimal subset of

features is built into the classifier construction [41].

As with IS methods, a great number of FS methods have been
developed recently. Two of the most well known classical
algorithms are forward sequential and backward sequential
selection [42], which begin with a feature subset and sequentially
add or remove features until the finalization of the algorithm.

Despite the popularity of sequential methods, other
approaches can be found in the literature [43]. Some of them
are based on heuristics [44], showing a proof of heuristics and
metaheuristics can be very useful in the task of selecting the most
appropriate subset of features to be used in a classification
algorithm. More complex approaches have been developed, based
on fuzzy entropy measures [45]. Some complete surveys, analyz-
ing both classical and advanced approaches to FS, can be found in
the literature [40,46,41].

2.1.3. Instance and feature selection

Instead of approaching IS or FS problems separately, some
research efforts have been applied to the study of the dual IS and
FS problem, which we will denote Instance and Feature Selection
(IFS). There is no inconvenience in tackling both problems
simultaneously because features and instances can be selected
in an independent way: the classification accuracy of the
classification process is the only part of the problem affected,
which will be determined by the selected data.

Some proposals for IFS can be found in the literature; a first
approach is proposed in [47], where a Genetic Algorithm (GA) is
employed to simultaneously select suitable instances and features
for a reference set of a k-NN classifier. This approach was
improved in [48], where, in addition, their proposal was also
employed to improve the performance of neural networks in
classification.

Another recent proposal can be found in [49], where a
simulated annealing method [50] is applied to perform alternately
IS and FS on each step of the search. More complex approaches
mixing Feature Weighting, IS and FS have been developed
recently [51,10].

2.2. Evolutionary algorithms on data reduction

Recently, the employment of EAs in data reduction problems
has become common in the machine learning field. This
subsection will review some interesting examples.

In [13], a complete study of the use of EAs in IS is made,
highlighting four EAs to complete this task: CHC Adaptive Search
Algorithm (CHC) [52], Steady-State Genetic Algorithm (SSGA),
Generational Genetic Algorithm (GGA) and population-based
incremental learning (PBIL). They concluded that EAs outperform
classical algorithms both in reduction rates and classification
accuracy. They also concluded that CHC is an appropriate EA to
carry out this task, according to the algorithms they compared.
Other proposals can be found in [15,53,54,16,55].

Most of the EAs approaches in FS are based on GAs, using both
filter and wrapper approaches [56–58,18,59–62]. A remarkable
proposal is [19], where the CHC algorithm shows good results
when applied to FS problems. Another interesting proposal is [17],
where an estimation of distribution algorithm based on Bayesian
Networks is presented.

It is possible to find applications of simultaneous IS and FS to
EAs. Both [47] and [48] propose a GA to perform the editing of the
instance set and selection of the feature set. Ho et al [63]
presented IGA, an intelligent GA designed to tackle both IS and FS
problems simultaneously, by the introduction of a special
orthogonal cross operator. More recently, a hybrid GA (HGA)
[64] has been developed by merging local search optimization
techniques with the genetic component itself. HGA performs its
search in two phases, firstly by using a basic GA based on the
restricted tournament selection (RTS) scheme, and secondly by
employing some different processes of local searches to help the
GA to converge.
2.3. Coevolutionary algorithms

A coevolutionary algorithm (CA) is an EA which is able to
manage two or more populations simultaneously. Coevolution,
the field in which CAs can be classified, can be defined as the co-
existence of some interacting populations, evolving simulta-
neously. In this manner, evolutionary biologist Price [65] defined
coevolution as reciprocally induced evolutionary change between

two or more species or populations. A wider discussion about the
meaning of coevolution in the field of EC can be found in the
dissertation thesis of Wiegand [66].

The most important characteristic of coevolution is the
possibility of splitting a given problem into different parts,
employing a population to handle each one separately. This
allows the algorithm to employ a divide-and-conquer strategy,
where each population can focus its efforts on solving a part of the
problem. If the solutions obtained by each population are joined
correctly, and the interaction between individuals is managed in a
suitable way, the coevolution model can show interesting benefits
in its application.

Therefore, the interaction between individuals of different
populations is key to the success of coevolution techniques. In the
literature, coevolution is often divided into two classes, regarding
the type of interaction employed:

Cooperative coevolution (CoCo): In this trend, each population
evolves individuals representing a component of the final
solution. Thus, a full candidate solution is obtained by joining
an individual chosen from each population. In this way, increases
in a collaborative fitness value are shared among individuals of all
the populations of the algorithm [23].

Competitive coevolution (ComCo): In this trend, the individuals
of each population compete with each other. This competition is
usually represented by a decrease in the fitness value of an
individual when the fitness value of its antagonist increases [67].

Coevolution is a research field which has started to grow
recently. With respect to the architecture of its models, some
interesting topics can be remarked upon:
�
 Some research efforts have been applied to tackle the question
about how to select the members of each population that will
be used to evaluate the fitness function. One way is to evaluate
an individual against every single collaborator in the other
population [68]. Although it would be a better way to select
the collaborators, it would consume a very high number of
evaluations in the computation of the fitness function. To
reduce this number, there are other options, such as the use of
just a random individual or the use of the best individual from
the previous generation [69].

ARTICLE IN PRESS

J. Derrac et al. / Pattern Recognition 43 (2010) 2082–2105 2085
�
 One main problem which CoCo (and Coevolution, in general)
must face is known as the loss of gradient problem in which one
population comes to severely dominate the others, creating a
situation where the other populations have insufficient
information from which to learn, due to the high degree of
domination present. This problem has been addressed by
several authors [70].

�
 Another question to solve is to define how the algorithm

should manage its populations. The most common answers are
to manage them by using either a sequential scheme or a
parallel scheme. Several studies have been done comparing
both approaches [71].

�

Fig. 1. Population scheme of IFS-CoCo.
The assignation of fitness to each individual is also an open
question. This feature, also called Collaboration Credit Assign-

ment is the rule which defines how a fitness value of an
individual will be updated when it will be used two or more
times as a part of a complete solution. Although the simplest
solution is to use just the last given value, some different
schemes have been developed, e.g., minimum, maximum and

average [72]. Also, more complex relationships have been
developed, e.g., based on game theory [73].

All these advances have been proposed with a main idea in
mind: coevolution is able to beat the well known No-Free-Lunch
(NFL) barrier present on most of the function optimization
techniques [74]. That means that it is possible to design CAs
which perform better than others EAs, when averaged over all
interaction functions, with respect to some measure of perfor-
mance [24]. This theoretical result has been studied in depth, and
as a result some proposals of NFL frameworks for Coevolution
have been developed [75].
3. A cooperative coevolutionary algorithm for instance and
feature selection: IFS-CoCo

The main features of IFS-CoCo will be presented in this section,
as well as all the details needed to perform its implementation,
along the next four subsections. Section 3.1 deals with the
description of the populations and the chromosome representa-
tion. Section 3.2 defines the fitness function employed. Section 3.3
presents the baseline EA on which our model is based, the CHC
algorithm. Finally, Section 3.4 describes the main coevolutionary
process performed by IFS-CoCo.
3.1. Populations and chromosome representation

As mentioned in the first section of this work, IFS-CoCo
manages three populations. The chromosomes of each one define
a different type of baseline classifier, thus each population is
focused on performing a basic data reduction task:
�
 The first population performs an IS process.

�
 The second population performs a FS process.

�
 The third population performs an IFS process.
From now on, they will be referred to as IS population, FS
population and IFS population, respectively. Fig. 1 shows a basic
representation of the scheme of the populations of IFS-CoCo.

All populations share the same basic chromosome definition.
Let us assume a data set with N instances and M attributes. Each
chromosome consists of a determinate number of genes, which
represents either an instance or a feature. A binary representation
is used, thus each gene has two possible states: 1, if the
corresponding feature/instance is included in the data set
represented by the chromosome, or 0 if not.

The concrete representation and size of the chromosome
depends on the population to which it belongs:
�
 IS population: Each gene represents an instance (chromosome
size: N).

�
 FS population: Each gene represents a feature (chromosome

size: M).

�
 IFS population: The first N genes of the chromosome represent

instances. Remaining genes represent features (chromosome
size: NþM).
By using this representation scheme, all chromosomes will
define a subset of the original data set, with everyone focused on a
concrete data reduction task. Regarding to the classification task,
each chromosome symbolizes a reduced subset, which will be
employed as a training set by the 1-NN classifier [9].
3.2. Fitness function

IFS-CoCo uses a fitness function focused on two objectives:
Maximize the accuracy rate of the multiclassifier defined by the
combination of the three populations and maximize the reduction
rates over instances and features.

Three chromosomes are needed to compute the fitness
function (one of each population, defining the three basic
classifiers). Each chromosome will get a fitness value, depending
on the accuracy rate obtained by the multiclassifier defined by the
joint of the three chromosomes, and also depending on the
reduction rate obtained by the data set coded by its phenotype.

To obtain the accuracy rate of the combination of three
chromosomes it is necessary to build a multiclassifier. This task
can be accomplished by building the three basic classifiers
defined by the chromosomes (an IS classifier, an FS classifier

ARTICLE IN PRESS

J. Derrac et al. / Pattern Recognition 43 (2010) 2082–21052086
and an IFS classifier). Then, the three outputs must be joined into
one, by using a majority voting function.

Each output value is obtained as the majority output of the
three basic classifiers. If no majority vote can be obtained, then
the output of the currently best classifier is preferred. The
currently best classifier is the one that belongs to the population
that achieved better overall results in the previous generation.

When the majority voting process has finished, the resulting
class can be regarded as the output of the multiclassifier. At this
point, the accuracy of the classifier, classRate, can be computed.

classRateðG;H; IÞ ¼
#Instances classified correctly

N
ð1Þ

where G is a chromosome from the IS population, H is a
chromosome of the FS population, I is a chromosome of the IFS
population, and N is the number of instances in the training set.
This result is assigned as the classRate of G, H and I.

classRateðGÞ ¼ classRateðG;H; IÞ

classRateðHÞ ¼ classRateðG;H; IÞ

classRateðIÞ ¼ classRateðG;H; IÞ ð2Þ

On the other hand, the reduction rates can be computed from
any chromosome. For a given chromosome J, two reduction rates
are defined:
�
 ReductionIS, which symbolizes the reduction rate obtained
regarding the instances of the data set:

ReductionISðJÞ ¼ 1:0-
#Instances Selected

N
ð3Þ

Where #Instances Selected is the number of genes set to 1 if J

belongs to the IS population, the number of genes set to 1 in
the first N genes if J belongs to the IFS population, or N if J

belongs to the FS population.

�
 ReductionFS, which symbolizes the reduction rate obtained

regarding the features of the data set:

ReductionFSðJÞ ¼ 1:0-
#Features Selected

M
ð4Þ

Where #Features Selected is the number of genes set to 1 if J

belongs to the FS population, the number of genes set to 1 in
the last M genes if J belongs to the IFS population, or M if J

belongs to the IS population.

At this point, assuming that a chromosome J has already defined
its classRate, ReductionIS and ReductionFS values, its fitness value
can be computed. The fitness function must be able to give any
chromosome a suitable value which adequately represent those
values.

A first approach (Eq. (5)) can be found in [13], where the
classRate and Reduction (the reduction rate achieved over the
selected instances) values are employed to define a suitable
fitness function for the IS problem, employing an a real-valued
weighting factor:

FitnessðJÞ ¼ a � clasRateðJÞþð1-aÞ � ReductionðJÞ ð5Þ

However, for this model we must define an expression
composed by classRate and the two reduction rates, ReductionIS

and ReductionFS. To obtain it, we define for IFS-CoCo the following
fitness function:

FitnessðJÞ ¼ a � b � clasRateðJÞþð1-aÞ � ReductionISðJÞþð1-bÞ � ReductionFSðJÞ

ð6Þ
where a and b are real-valued weighting factors valued in the
interval [0,1].

In [13], it is suggested to employ a value of 0.5 for the a
parameter (for Eq. (6)). In our approach, this value should be
increased a bit, due to the influence of the simultaneous use of
ReductionIS and ReductionFS components (and the b parameter) to
compute the fitness value.

On the other hand, the value of the second parameter, b,
should be adjusted carefully. This value has to be near 1.0, to
avoid an excessive deletion of features in the solutions obtained.
In the k-NN classifier, the removal of a feature can influence too
much the subsequent classification process. Thus, a high pressure
towards obtaining high reduction rates over the subset of selected
features may degrade significantly the accuracy of the classifier.
Consequently, the value of the b parameter should not be set very
far from 1.0 (but lesser to it, to allow our model to select smaller
subsets when comparing two solutions with a similar classRate

associated).
3.3. CHC algorithm

CHC [52] is a binary-coded GA which involves the combination
of a selection strategy with a very high selective pressure, and
several components inducing a strong diversity. Due to these
characteristics, CHC has become a robust EA, which should often
offer promising results in several search problems.

We have selected CHC as a baseline EA for our model because
it has been widely studied, being now a well-known algorithm on
evolutionary computation. Furthermore, previous studies like [13]
support the fact that it can perform well on data reduction
problems.

The four main components of the algorithm are shown as
follows:
�
 An elitist selection: The members of the current population are
merged with the offspring population obtained from it and the
best individuals are selected to compose the new population.
In cases where a parent and an offspring have the same fitness
value, the former is preferred to the latter.

�
 A highly disruptive crossover: HUX, which crosses over exactly

half of the non-matching alleles, where the bits to be
exchanged are chosen at random without replacement. This
way, it guarantees that the two offspring are always at the
maximum Hamming distance from their two parents, thus
encouraging the introduction of a high diversity in the new
population and lessening the risk of premature convergence.

�
 An incest prevention mechanism: During the reproduction step,

each member of the parent (current) population is randomly
chosen without replacement and paired for mating. However,
not all these couples are allowed to cross over. Before mating,
the Hamming distance between the potential parents is
calculated and if half this distance does not exceed a difference
threshold d, they are not mated. The aforementioned threshold
is usually initialized to L=4 (with L being the chromosome
length). If no offspring is obtained in one generation, the
difference threshold is decremented by one.
The effect of this mechanism is that only the more diverse
potential parents are mated, but the diversity required by the
difference threshold automatically decreases as the population
naturally converges.

�
 A restart process: replacing the GA mutation, which is only

applied when the population has converged. The difference
threshold is considered to measure the stagnation of the
search, which happens when it has dropped to zero and several
generations have been run without introducing any new

ARTICLE IN PRESS

J. Derrac et al. / Pattern Recognition 43 (2010) 2082–2105 2087
individual into the population. Then, the population is
reinitialized by considering the best individual as the first
chromosome of the new population and generating the
remaining chromosomes by randomly flipping a percentage
(usually 35%) of their bits.
Algorithm 1 shows a basic pseudocode of CHC.

Algorithm 1. CHC algorithm basic structure
Input: population

1
 Initialization(population);

2
 d¼ L=4;

3
 Evaluate(population);

4
 while termination condition not satisfied do

5
 candidates=SelectParents(population);

6
 offSpring=CrossParents(candidates);

7
 Evaluate(offspring);

8
 SelectNewPopulation(population, offspring);

9
 if Population not changed then

10
 d¼ d-1;

11
 end

12
 if do0 then

13
 Restart(population);

14
 Initialize(d);

15
 end

16
 end
Output: Best(population)
To increase the speed of the data reduction process performed
by IFS-CoCo, we have modified the definition of the HUX-cross
operator. In this manner, when a gene representing an instance is
going to be set from 0 to 1 by the crossing procedure, it is only set
to one with a defined probability (prob0to1 parameter). No
modifications are applied to changes from 1 to 0, or to genes
representing features.

For example, if one chromosome, 1100000000, and another
chromosome, 1111111111, defining an IS classifier, are crossed by
the HUX standard operator, the offspring will be 1111110000 and
1100001111. On the same scenery, an execution of our HUX
modified operator, with a probability of change prob0to1¼ 0:5,
would give as the output the offspring 1101100000 and
1100001111. Fig. 2 shows this example graphically.
Fig. 2. The modified HUX crossing operator.
With this modification, the HUX crossing operator will help to
speed up the reduction process.

3.4. Coevolutionary process

This subsection describes the coevolutionary process of IFS-
CoCo. Algorithm 2 shows a basic pseudocode of the model
proposed. In the following we describe the instructions enumer-
ated from 1 to 9:

Algorithm 2. IFS-CoCo algorithm
1
 Generate ISPopulation,FSPopulation and IFSPopulation
Randomly;
2
 Select initial bestISArray, bestFSArray and bestIFSArray;

3
 Evaluate all populations in the multiclassifier;

4
 Select bestISArray, bestFSArray and bestIFSArray from each

population;

5
 while evaluationsomax_evaluations do

6
 Select best classifier in last generation;

7
 Do a CHC Generation on every population;

8
 Evaluate the individuals of every population;

9
 Update bestISArray, bestFSArray and bestIFSArray if a

better global solution has been found;

10
 end
Output: bestISArray, bestFSArray and bestIFSArray
�
 Instruction 1 generates the three initial populations. This step
includes the random generation of the chromosomes (all of its
genes are valued at either 0 or 1, with equal probability), and
an initial evaluation of the quality of each chromosome. This
basic evaluation consists of building the basic classifier defined
by the chromosome (IS classifier, FS classifier or IFS classifier),
and the extraction of its related accuracy. Because no use of the
general fitness function is made, these fake evaluations are not
counted into the limit.

�
 Instruction 2 selects the best individual of each population.

With them, every chromosome can be evaluated with the
general fitness function, in order to assign them a real fitness
value.

�
 In instruction 3, this evaluation is done by grouping every

chromosome with the two chromosomes selected of the other
populations (e.g. chromosomes of IS population will employ FS
population and IFS population best individuals as partners),
and using then the fitness function.

�
 When the evaluation process is finished, instruction 4 selects

the best performing individual of each population.

�
 Instruction 5 conducts the coevolutionary process.
� In instruction 6, the best performing individual of each

population is selected to help in the task of building the
multiclassifiers.
� Instruction 7 performs a single generation over each

population, in an arbitrary order (e.g., IS population, FS
population and IFS population), by employing the general
EA (CHC, in this case) and the multiclassifier based fitness
function.
� Instruction 8 evaluates the individuals of every population.
� Instruction 9 concludes a generation, updating the best

global solution if a better fitness score has been found. The
three chromosomes employed to get this elite solution are
saved.
When a fixed number of evaluations run out, the evolutionary
process is finished. The algorithm returns the best global solution

ARTICLE IN PRESS

Table 1
UCI Data sets used in our experiments.

Data set Examples Attributes Classes

Aut 205 25 6

Bal 625 4 3

J. Derrac et al. / Pattern Recognition 43 (2010) 2082–21052088
found, represented by the best chromosome found in each
population.

At the end of the coevolutionary process, the final IFS-CoCo
based classifier can be built based on the output chromosomes.
This multiclassifier will work in the same manner as all the
multiclassifiers employed in the coevolutionary process.
Bupa 345 6 2

Car 1728 6 4

Cleveland 303 13 5

Dermat 366 34 6

German 1000 20 2

Glass 214 9 7

Housevotes 435 16 2

Iris 150 4 3

Mammograph 961 5 2

Pima 768 8 2

Sonar 208 60 2

Spectfheart 267 44 2

Tic-tac-toe 958 9 2

Vehicle 846 18 4

Wisconsin 699 9 2

Zoo 101 16 7

Table 2
High dimensional data sets employed.

Data set Examples Attributes Classes

Chess 3196 36 2

Movement-Libras 360 90 15

Satimage 6435 36 7

Spambase 4597 57 2

Splice 3190 60 3

Texture 5500 40 11
4. Experimental framework

This section shows the details of the experimental framework.
Section 4.1 presents the classification problems employed. Section
4.2 summarizes the algorithms employed in the comparison.
Section 4.3 describes the parameters employed in each method.
Section 4.4 discuss the performance measures employed to
evaluate our proposal. Finally, Section 4.5 discusses the statistical
tests employed to analyze the results.

4.1. Classification problems

To check the performance of IFS-CoCo, we have used 18 data
sets taken from the UCI Machine Learning Database Repository
[76]. Table 1 shows their main characteristics. For each data set
the number of examples, attributes and classes of the problem
described are shown.

Additionally, we have selected a second set of 6 high
dimensional data sets (with more than 35 features), of higher
size, to perform a second study about the behavior of our
approach when the size of the problem increases. All of them
have been also taken from the UCI Machine Learning Database
Repository [76], except the Texture data set, which belongs to the
ELENA project.2 Table 2 shows its characteristics.

The data sets considered are partitioned by using the ten fold
cross-validation (10-fcv) procedure, and their values are normal-
ized in the interval [0,1] to improve the classification power of the
1-NN rule.

4.2. Algorithms for evaluation

IFS-CoCo will be compared with several evolutionary data
reduction algorithms, which manage IS, FS or IFS with the 1-NN
rule employed as a baseline classifier.

The concrete algorithms employed are:
�
 IS algorithms:
– IS-CHC: CHC algorithm performing IS [13].
– IS-SSGA: SSGA algorithm performing IS [13].
– IS-GGA: GGA algorithm performing IS [13].
2 ft
�
 FS algorithms:
– FS-CHC: CHC algorithm performing FS [19].
– FS-SSGA: SSGA algorithm performing FS.
– FS-GGA: GGA algorithm performing FS.
�
 IFS algorithms:
– IFS-CHC: CHC algorithm performing IS and FS.
– IGA: Intelligent GA [63].
– HGA: Hybrid GA [64].
�
 1-NN: We compare 1-NN as the basic baseline with all data
sets.

CHC, SSGA and GGA based implementations are based on basic
evolutionary search processes by the original algorithms, by using
the same chromosome representation as the basic population of
our model.
p://ftp.dice.ucl.ac.be/pub/neural-nets/ELENA/databases
A wider description of all the comparison algorithms can be
found in the Appendix A of this contribution.

4.3. Parameters

The most important parameter of IFS-CoCo and the rest of
comparison algorithms is the number of evaluations of the fitness
function allowed before stopping the search process. We have
selected to employ 10,000 evaluations because it is a classical
limit employed to test the performance of the majority of EAs for
IS [13], which should allow every algorithm to converge in most
of the problems used.

The rest parameters used by IFS-CoCo are:
�
 Population size: 50 (for each population)

�
 a weighting factor: 0.6

�
 b weighting factor: 0.99

�
 prob0to1 on HUX: 0.25
CHC based algorithms uses the same parameters (including the
HUX modified probability), incorporating the fitness function
weights when it is necessary.

SSGA and GGA based algorithms also use the same parameters,
but they employ standard cross and mutation operators. Their
probabilities are:
�
 Crossing probability (SSGA): 1.0.

�
 Crossing probability (GGA): 0.6.

�
 Mutation probability from 0 to 1 (instances): 0.001.

ftp://ftp.dice.ucl.ac.be/pub/neural-nets/ELENA/databases

ARTICLE IN PRESS

J. Derrac et al. / Pattern Recognition 43 (2010) 2082–2105 2089
�
 Mutation probability from 1 to 0 (instances): 0.01.

�
 Mutation probability (features): 0.01.
IGA parameters are:
�
 Population size: 50 (for each population).

�
 Mutation probability 0 to 1 (instances): 0.001.

�
 Mutation probability 0 to 1 (features): 0.01.

�
 Mutation probability 1 to 0 (features): 0.01.

�
 a weighting factor: 0.04.
Finally, HGA has defined 23 parameters. The main parameters’
values are:
�
 Population size: 50 (for each population).

�
 Crossing probability: 0.5.

�
 Mutation probability: 0.05.

�
 The rest of the parameters are set to default values (those

listed by the authors in [64]).

4.4. Performance measures

To analyze the results obtained in the study, we have
employed three performance measures:

Accuracy: We define the accuracy as the number of successful
hits relative to the total number of classifications. It has been by
far the most commonly used metric for assessing the performance
of classifiers for years [1,77,78].

Kappa: Is an alternative to classification rating: a method,
known for decades, that compensates for random hits [79]. Its
original purpose was to measure the degree of agreement or
disagreement between two people observing the same phenom-
enon.

Cohen’s kappa can be adapted to classification tasks and its use
recommended because it takes random successes into considera-
tion as a standard, in the same way as the AUC measure [80]. Also,
it is used in some well-known software packages, such as WEKA
[1], SAS, SPSS, etc. An easy way of computing Cohen’s kappa is to
make use of the resulting confusion matrix in a classification task.
Specifically, the Cohen’s kappa measure can be obtained using
expression (7):

kappa¼
n
PC

i ¼ 1 xii�
PC

i ¼ 1 xi:x:i

n2�
PC

i ¼ 1 xi:x:i
ð7Þ

where xii is the cell count in the main diagonal, n is the number of
examples, C is the number of class values, and x:i, xi: are the
columns and rows total counts, respectively. Cohen’s kappa
ranges from -1 (total disagreement) through 0 (random classifica-
tion) to 1 (perfect agreement). Being a scalar, it is less expressive
than ROC curves when applied to binary-classification. However,
for multi-class problems, kappa is a very useful, yet simple, meter
for measuring the accuracy of the classifier while compensating
for random successes.

The main difference between classification rating and Cohen’s
kappa is the scoring of the correct classifications. Classification rate
scores all the successes over all classes, whereas Cohen’s kappa scores
the successes independently for each class and aggregates them. The
second way of scoring is less sensitive to randomness caused by a
different number of examples in each class, which causes a bias in the
learner towards obtaining data-dependent models.

Reduction: The reduction rate is defined as the ratio of data
selected by the algorithm. For example, if a given solution only
selects half of the instances (or features) of the training set, its
reduction rate will be 0.5. If a given solution only selects half of the
instances and half of the features, its reduction rate will be 0.75.
It has a strong influence on the efficiency of the solutions
obtained, due to the cost of the final classification process
performed by the k-NN classifier ðOðN2 �MÞÞ.

Time: The simplest way to measure the practical efficiency of a
method. We will analyze the average time elapsed (in seconds) by
every data reduction method in each complete execution (no
times are given for 1-NN, since it does not perform a data
reduction phase).
4.5. Test for analysis

To complete the experimental study carried out, we have
performed a statistical comparison of accuracy between IFS-CoCo
and all the evaluation algorithms. In [81,82] a set of simple, safe
and robust non-parametric tests for statistical comparisons of
classifiers are recommended. One of them is the Wilcoxon signed-
ranks test [27,83], which is the test that we have selected to do
the comparison.

This is analogous to the paired t-test in non-parametric
statistical procedures; therefore it is a pairwise test that aims to
detect significant differences between two sample means, that is,
the behavior of two algorithms. It is defined as follows: Let di be
the difference between the performance scores of the two
classifiers on i-th out of Nds data sets. The differences are ranked
according to their absolute values; average ranks are assigned in
the case of ties. Let Rþ be the sum of ranks for the data sets in
which the first algorithm outperformed the second, and R- the
sum of ranks for the opposite. Ranks of di ¼ 0 are split evenly
among the sums; if there is an odd number of them, one is
ignored:

Rþ ¼
X

di 40

rankðdiÞþ
1

2

X

di ¼ 0

rankðdiÞ

R- ¼
X

di o0

rankðdiÞþ
1

2

X

di ¼ 0

rankðdiÞ ð8Þ

Let T be the smaller of the sums, T ¼minðRþ ;R-Þ. If T is
less than or equal to the value of the distribution of Wilcoxon

for Nds degrees of freedom ([84], Table B.12), the null hypothesis

of equality of means is rejected; this will mean that a
given classifier outperforms their opposite, with the p-value
associated.

The Wilcoxon signed ranks test is more sensible than the t-
test. It assumes commensurability of differences, but only
qualitatively: greater differences still count for more, which is
probably desired, but the absolute magnitudes are ignored. From
the statistical point of view, the test is safer since it does not
assume normal distributions. Also, the outliers (exceptionally
good/bad performances of a few data sets) have less effect on the
Wilcoxon than on the t-test. The Wilcoxon test assumes
continuous differences di, therefore they should not be rounded
to one or two decimals, since this would decrease the power of
the test in the case of a high number of ties.

When the assumptions of the paired t-test are met, Wilcoxon
signed-ranks test is less powerful than the paired t-test. On the
other hand, when the assumptions are violated, the Wilcoxon
test can be even more powerful than the t-test. This allows us to
apply it over the means obtained by the algorithms in each data
set, without any assumptions about the sample of results
obtained.

A complete description of the Wilcoxon signed ranks test and
other non-parametric tests for pairwise and multiple compar-
isons, together with software for their use, can be found in the
website available at http://sci2s.ugr.es/sicidm/.

http://sci2s.ugr.es/sicidm/

ARTICLE IN PRESS

Table 7
Wilcoxon Signed-Ranks Test for FS algorithms.

FS Algorithms Accuracy Kappa

Rþ R- P-value Rþ R- P-value

IFS-CoCo vs FS-CHC 140.5 30.5 0.014 125 46 0.090

IFS-CoCo vs FS-SSGA 148 23 0.004 145 26 0.008

IFS-CoCo vs FS-GGA 150 21 0.003 152 19 0.002

IFS-CoCo vs 1-NN 157 14 0.001 143 28 0.010

Table 8
Wilcoxon Signed-Ranks Test for IFS algorithms.

IFS Algorithms Accuracy Kappa

Rþ R- P-value Rþ R- P-value

IFS-CoCo vs IFS-CHC 126 45 0.081 142 29 0.012

IFS-CoCo vs IGA 171 0 0.000 171 0 0.000

IFS-CoCo vs HGA 143 28 0.010 149 22 0.004

IFS-CoCo vs 1-NN 157 14 0.001 143 28 0.010

J. Derrac et al. / Pattern Recognition 43 (2010) 2082–21052090
5. Results and analysis

This section presents the results obtained in the experiment
study and analyzes them. In addition, we discuss some advances
ideas concerning the behavior of our proposal. Section 5.1 shows
the results obtained and analyzes them. Section 5.2 analyzes a
comparative study between IFS-CoCo and some classical propo-
sals of IS and FS. Section 5.3 presents a study of how to tune the
most important parameters of IFS-CoCo. Section 5.4 shows an
analysis of the subsets of instances and features selected by the
three populations of IFS-CoCo. Section 5.5 performs an analysis of
the convergence of the search process. Section 5.6 shows a second
study about the behavior of IFS-CoCo when dealing with high
dimensional data sets. Finally, Section 5.7 discusses some
interesting trends for future work.

5.1. Results obtained

The results obtained by IFS-CoCo are compared in three
categories: IS algorithms, FS algorithms, and IFS algorithms. For
each category, two tables are shown:
�

Tab
IFS-

A

K

R

T

Tab
IFS-

A

K

R

T

Tab
IFS-

A

K

R

T

Tab
Wil

IS

IF

IF

IF

IF
Tables 3–5 show the average results in accuracy, kappa,
reduction and time elapsed, employing a 3� 10- fold cross
le 4
CoCo vs FS algorithms.

IFS-CoCo FS-CHC FS-SSGA FS-GGA 1-NN

ccuracy 0.8164 0.7921 0.7449 0.7438 0.7851

appa 0.6361 0.6064 0.5048 0.4957 0.5768

eduction 0.5200 0.4419 0.4624 0.4671 –

ime 171.31 193.14 180.51 180.50 –

le 3
CoCo vs IS algorithms.

IFS-CoCo IS-CHC IS-SSGA IS-GGA 1-NN

ccuracy 0.8164 0.7994 0.7822 0.7789 0.7851

appa 0.6361 0.5759 0.5950 0.6033 0.5768

eduction 0.9818 0.9617 0.9303 0.9370 –

ime 171.31 17.67 39.03 49.70 –

le 5
CoCo vs IFS algorithms.

IFS-CoCo IFS-CHC IGA HGA 1-NN

ccuracy 0.8164 0.7978 0.6782 0.7993 0.7851

appa 0.6361 0.5922 0.3439 0.5836 0.5768

eduction 0.9911 0.9890 0.9913 0.4954 –

ime 171.31 18.31 121.76 95.58 –

le 6
coxon Signed-Ranks Test for IS algorithms.

Algorithms Accuracy Kappa

Rþ R- P-value Rþ R- P-value

S-CoCo vs IS-CHC 155 16 0.001 138 33 0.021

S-CoCo vs IS-SSGA 162 9 0.000 143 28 0.010

S-CoCo vs IS-GGA 154 17 0.001 127 44 0.074

S-CoCo vs 1-NN 157 14 0.001 143 28 0.010
validation scheme (30 trials per data set) with the 18 data sets
of the study. The reduction rate shown for IFS-CoCo
corresponds to the relevant population in each category, i.e.,
the reduction rate in IS population for comparison with IS
algorithms and so on.

�
 Tables 6–8 show the results of performing a two-tailed

Wilcoxon Signed-Ranks Test [81] with IFS-CoCo against the
respective comparison algorithms. For each test, Rþ and R-

values are shown. Final P-values are computed from these
values, as we explained in Section 4.5.

The full results of this experimental study can be viewed in the
Appendix B. Table 14 shows the accuracy results in the training
and test phases of IFS-CoCo, the IS algorithms and the 1-NN
method. Table 15 shows their kappa results. Table 16 shows the
reduction rates achieved by every method. And finally, Table 17
shows the average time elapsed in each data set. In a similar way,
Tables 18–21 show the results achieved by FS methods, and
Tables 22–25 show the results achieved by IFS methods. Tables
regarding accuracy and kappa measures also show the standard
deviations, and highlight in bold the best results obtained in the
test phase.

Reading the results shown in the tables, we can make the
following analysis:
�
 IFS-CoCo achieves the best average result in accuracy in the
three categories.

�
 IFS-CoCo also achieves the best average result in kappa in the

three categories. This means that the success in classification
accuracy achieved by our proposal is not caused just by
randomness, because it is able to outperform the rest of the
algorithms in both performance measures.

�
 IFS-CoCo is able to obtain higher reduction rates than all the

remaining algorithms when each of its populations is com-
pared separately.

�
 The time taken by IFS-CoCo is comparable to the time spent by

FS methods. Although isolated IS and IFS methods are quicker,
the increase in time complexity of IFS-CoCo (which is caused
by the inclusion of the FS population) can be seen as a minor
drawback when we take into account the results obtained in
the rest of the performance measures.

ARTICLE IN PRESS

Table 10

J. Derrac et al. / Pattern Recognition 43 (2010) 2082–2105 2091
�

Tab
IFS-

A

K

R

R

T

Wilcoxon Signed-Ranks Test for Classical algorithms.

IS Algorithms Accuracy Kappa

Rþ R- P-value Rþ R- P-value
In accuracy, IFS-CoCo outperforms statistically all the compar-
ison algorithms with a level of significance a¼ 0:01, excepting
FS-CHC (which IFS-CoCo outperforms with a level of signifi-
cance a¼ 0:05) and IFS-CHC (IFS-CoCo outperforms it with a
level of significance a¼ 0:1).

�

IFS-CoCo vs DROP3 169 2 0.001 171 0 0.000

IFS-CoCo vs ICF 171 0 0.000 169 2 0.001

IFS-CoCo vs Relief 150 21 0.003 146 25 0.007

IFS-CoCo vs LVW 148 23 0.005 132 39 0.043
In kappa, IFS-CoCo outperforms statistically all the comparison
algorithms with a level of significance a¼ 0:01, excepting IS-
CHC ða¼ 0:05Þ, IS-GGA ða¼ 0:1Þ, FS-CHC ða¼ 0:1Þ and IFS-CHC
ða¼ 0:05Þ.

The employment of coevolution as a way of breaking the search
objective down into three isolated tasks (IS, FS and IFS) has been
shown to be quite beneficial, allowing IFS-CoCo to perform a more
accurate selection of the relevant data to improve the classifica-
tion results.

The cooperation between individuals of different populations
has allowed our model to better refine the initial data, discarding
more noisy and irrelevant instances and features (e.g., some
instances which may be relevant if employed with an IS scheme,
have become irrelevant with the addition of FS and IFS reduced
sets, thus they can be removed safely, improving the general-
ization capabilities of the classifier). This affirmation is supported
by the fact that the reduction rates achieved by each of the
populations of IFS-CoCo are slightly higher than the rates of the
remaining algorithms. This result confirms that our model can
perform a more aggressive reduction of the training data without
harming (and even increasing) the generalization capabilities of
the 1-NN rule.

5.2. Comparison with classical approaches

To further demonstrate the benefits of our approach, we have
performed a second comparison, between IFC-CoCo and some
classical non-evolutionary methods for IS and FS.

The methods employed are:
�
 DROP3: A decremental IS procedure proposed in [31]. It
performs a noise filtering phase and an instance removal
phase, where instances are removed if they do not harm the
classification accuracy.

�
 ICF: Another decremental IS procedure, proposed in [85]. It also

performs a noise filtering phase before starting the instance
removal phase. In its second phase, ICF selects some instances
to remove, employing two concepts: Reachability and coverage.

�
 Relief: A filter-based FS method, proposed in [86]. Relief selects

features that are statistically relevant, based on how the
features represent the decision boundaries of data (employing
Euclidean distance). The method is not applied to the entire
training set. Instead, a sample (of fixed size) of the training set
is extracted to perform the FS procedure.

�
 LVW: A common Las Vegas wrapper-based FS method [87].

This simple method generates a fixed number of random
solutions, and tests them by employing the k-NN classifier in
the training data.
le 9
CoCo vs Classical algorithms.

IFS-CoCo DROP3 ICF Relief LVW

ccuracy 0.8164 0.7553 0.7317 0.7472 0.7753

appa 0.6361 0.5147 0.4880 0.4862 0.5652

eduction (IS) 0.9818 0.8281 0.7328 – –

eduction (FS) 0.5200 – - 0.4004 0.3704

ime 171.31 0.44 0.11 0.43 150.55
The relevant parameters employed for these methods are:
�
 Relief: Size Sample: 100. Relevance Threshold: 0.2.

�
 LVW: Number of solutions: 10000.
Table 9 shows the average results obtained in this second study
(the full results can be found in Appendix B, in Tables 26–29).
Again, we have performed a Wilcoxon signed ranks test to
contrast these results (Table 10).

If we analyze the tables, we can observe that IFS-CoCo
outperforms the rest of the proposals in terms of accuracy, kappa
and reduction rates. Our approach is able to select better reduced
training sets for the 1-NN classifier than the classical ones,
enabling it to perform quicker and more accurate classification
process, thanks to the higher reduction rates obtained.

However, it is still possible to argue that our approach is
slower than the classical ones (except for LVW, which also
employs the 1-NN classifier to compute its fitness function).
Although this may be seen as a drawback, we can point out that it
is not too important if we take into consideration the high
reduction rates achieved by our approach. Thanks to its high
reduction capabilities, IFS-CoCo will be able to perform a faster
classification process of the test set (which, in real life, is usually
the most critical phase in terms of time consumption).

The results of the Wilcoxon Signed Ranks test confirm that IFS-
CoCo greatly outperforms ða¼ 0:01Þ the rest of the classical
proposals, both in accuracy and kappa measures (except LVW in
kappa measure ða¼ 0:05Þ).
5.3. Selection of suitable parameters for IFS-CoCo

Although we have defined completely how IFS-CoCo works, an
interesting question remains: How can a user select suitable
values for the parameters of the algorithm?

Some parameters are similar to those usually employed in most
of the existing evolutionary approaches for IS and FS. In this way,
the number of evaluations of the fitness function (10,000), and the
size of the populations (50), can be selected, assuming that those
values will work well in most of the problems presented.

However, there are other parameters of IFS-CoCo which cannot
be selected by this way. The first of them, the prob0to1 is easier to
set. Experimentally, it is possible to find that this parameter does
not have a great impact on the results if it is kept at a reasonable
interval (0.2–0.5). A value lower than 0.2 may bias the search,
making it very difficult for CHC to preserve the quantity of 1’s in
the chromosomes, thus producing solutions with high reduction
rates but very low results in accuracy due to the impossibility of
CHC selecting enough data to represent the initial training set in a
suitable way. On the other hand, a value higher than 0.5 will
diminish the effect of the modified HUX-cross operator, thus
producing solutions with lower reduction rates. Consequently, we
have defined prob0to1¼ 0:25 as a optimal set up.

ARTICLE IN PRESS

Fig. 3. Results in accuracy by employing different values (0.4–0.7) of the a parameter.

Fig. 4. Results in accuracy by employing different values (0.9–0.995) of the b parameter.

J. Derrac et al. / Pattern Recognition 43 (2010) 2082–21052092

ARTICLE IN PRESS

J. Derrac et al. / Pattern Recognition 43 (2010) 2082–2105 2093
The most influential parameters of IFS-CoCo are a and b. Both
define the behavior of the fitness function and the importance of
the accuracy and reduction objectives in the search.

The a parameter defines the weight of the instances’ reduction
rate in the fitness function. The starting point here is a¼ 0:5,
because it is the value employed in the majority of evolutionary
proposals for IS that incorporates the reduction rate to its fitness
functions [13]. To tune it, we have selected six representative data
sets (Bupa, Pima, Sonar, Tic-tac-toe, Spectfheart and Movement

(Movement-libras)) and tested the effects on test accuracy by
changing the value of the parameter to some values between 0.4
and 0.7. The results of the test are shown in Fig. 3 (the X-axis
represents the possible values of a, and the X-axis represents the
average test accuracy achieved).

As can be seen in the graphics, an optimal value for a is 0.6.
Lower values lead to slightly worse results in classification
accuracy, while greater values lead to equal results. However, the
reduction rates achieved will be greater the lower the parameter is,
thus we have selected a¼ 0:6 as a suitable value for IFS-CoCo.

On the other hand, the b parameter defines the weight of the
features’ reduction rate in the fitness function. This value should
be very near to 1, because the removal of one feature from the
training set can produce a high decrease in accuracy due to the
large amount of data erased. Thus, only noisy features should be
removed, keeping nearly irrelevant ones in the training set if their
removal could cause a decrease in accuracy.

Again, we have tested the effects in test accuracy by changing
the value of the parameter to some values. This time we have
varied the value of the parameter between 0.9 and 0.995. The
results of the test are shown in Fig. 4 (the X-axis represents the
possible values of b, and the Y-axis represents the average test
accuracy achieved).

As can be seen in the graphics, an optimal value for b is 0.99,
both in low-dimensional (Bupa, Pima and Tic-tac-toe) and high
dimensional (Sonar, Spectfheart and Movement) data sets. Lower
values often lead to worse results in classification accuracy,
sometimes producing unstable behavior, while greater values
lead to equal results. There is no point in increasing b more,
because the classification accuracy does not increase, and it could
be counterproductive to the objective of achieving a reasonable
reduction rate in the features’ component.
5.4. Analysis of the subsets selected by IFS-CoCo

Another interesting question is related to the subsets of
instances and features selected as the final solution by each of
the populations of IFS-CoCo. What is the criterion employed by
Table 11
Analysis of the features selected by IFS-CoCo (3� 10- cross validation scheme).

Data set Features #Selected 1 2 3 4 5 6

Bal 4 1.4 11 10 11 10 – –

Bupa 6 3.7 19 3 25 28 27 18

Car 6 5.0 30 30 0 30 30 30
Cleveland 13 5.9 17 9 26 19 12 8

Glass 9 5.3 30 20 27 11 8 25
Housevotes 16 5.4 0 11 25 29 11 7

Iris 4 1.7 3 0 29 26 – -

Mammographic 5 1.1 10 0 5 17 0 –

Pima 8 2.8 15 21 5 1 8 21
Tic-tac-toe 9 6.8 30 16 29 14 30 13

Vehicle 18 10.3 29 14 28 0 30 21
Wisconsin 9 4.9 25 18 9 5 17 21
Zoo 16 7.0 11 20 6 29 11 28
our approach to select some subsets of features/instances and
discard the rest? Is it a stable decision in subsequent trials in the
same data set?. This section is devoted to answering these
questions, showing the reasons why a feature/instance will be
selected or not for a given problem.

IS population: In the field of IS and prototype selection there
are several different approaches to distinguishing which instances
must be selected in order to obtain the best possible training set
for a given problem. For example, classical condensation algo-
rithms (like CNN [32]) often kept the boundary instances while
discard the inner ones. By contrast, classical edition algorithms
(like ENN [33]) usually smooth the decision frontiers, removing
instances which are near to them. Other algorithms employ more
sophisticated methods (like ICF [85], which separates the data
into smaller clusters).

Evolutionary approaches try to select the most representative
instances achieving the highest reduction as possible. The number
and type of instances selected may generally depend on the difficulty
of the problem tackled and how appropriate is the k-NN classifier for
it. Evolutionary methods, like CHC [52], are able to find optimized and
adaptive solutions selecting the most suitable instances of the
training set without being restricted by prior knowledge about the
distribution of the data. For example, the graphical representations of
data in [13] show us that the subsets of instances selected are very
reduced and have an high quality, showing that CHC selects border or
internal instances as needed. IFS-CoCo also takes advantage of this,
selecting very reduced subsets of instances of high quality. Evolu-
tionary selection looks for a good distribution of decision frontiers
using the Voronoi diagrams resulted from k-NN. As we know, similar
Voronoi diagrams can be obtained with different subsets of instances,
thus it is the main reason that justifies the minimum overlap of
instances selected between different runs of the algorithm over all the
partitions of the data set.

FS population: By contrast to the instances selected by IS
population, the features selected by the FS population show stable
behavior in most of the problems.

To analyze it, we have compiled the subsets of features
selected by the FS population in every data set (excluding those
with more than 20 features, for clarity), over the thirty trials
carried out in the 3� 10�cross validation scheme employed in
the experimental study. These are presented in Table 11. For each
data set the total number of features which compose it is given,
the average number of features selected per trial, and the number
of times (out 30) where every instance has been selected.

Some interesting conclusions can be drawn from this analysis:
�

7

–

–

–

4

3
2
–

-

9

3
5

8

9

Some features can be marked relevant (being selected many
times). It is possible to extract some patterns in most of the
8 9 10 11 12 13 14 15 16 17 18

– – – – – – – – – – –

- – - – - – - – - – –

- – - – - – - – - – –

9 14 4 17 30 13 – - – - –

0 11 0 – - – - – - – - –

3 0 17 3 2 6 13 14 4 3 – –

- – - – - – - – - – –

– - – - – - – - – - –

21 – - – - – - – - – –

0 17 30 – - – - – - – - –

28 22 19 19 7 13 6 0 0 27 27
19 5 – - – - – - – - –

3 26 4 1 9 30 3 3 1 – –

ARTICLE IN PRESS

Tab
Ave

A

A

K

R

R

R

T

J. Derrac et al. / Pattern Recognition 43 (2010) 2082–21052094
data sets, which allow us to identify what are the most
relevant features in a given problem. Thus, it is possible to
assume that the more relevant a given feature is, the greater
the number of times it will be selected and the more stable this
selection will be.

�
 It is possible to employ some a priori information to explain

the patterns found. For example, for the data set Iris it is
known that the two most relevant features are the petal length
and the petal width (features #3 and #4). Moreover, when
testing the acceptability of a car (car data set), it is often more
interesting to know its price (feature #1), cost of maintenances
(feature #2), number of persons to carry (feature #4), capacity
of the luggage boot (feature #5) or safety (feature #6) than to
know the number of doors it has (feature #3), which may also
be derived in part from the number of persons to carry.-
Furthermore, any experienced player in the game of tic-tac-toe
will know that the most important positions to win the game
are the center (feature #5) and the corners (features #1, #3, #7
and #9), the rest less interesting if you want to win the game
or, at least, prevent your opponent from achieving the victory.

�
 The relevance of the patterns could also be useful to characterize

the data sets in terms of data complexity [88,89]. For example,
less relevant patterns (like those extracted in balance, cleveland
or pima) often lead to a difficult challenge to FS approaches. By
contrast, the behavior of most of the IS approaches in these
problems is significantly better.
All of these facts can be employed to explain how the behavior
of IFS-CoCo will be with respect to the subsets of selected
features: When applied to a problem with well-defined struc-
tures, where some attributes could be found to be relevant, our
approach will exhibit a stable behavior, selecting those relevant
features in most of the trials. By contrast, when facing less well
defined problems or with complex relationships between attri-
butes, IFS-CoCo’s behavior will be less stable, thus having to rely
on the subsets selected by IS and IFS populations.

IFS population: The third population of IFS-CoCo shows peculiar
behavior: It selects a very reduced number of instances and
Fig. 5. Map of convergence of IFS-C

le 12
rage results achieved (high dimensionality data sets).

lg IFS-CoCo IS-CHC IS-SSGA IS-GGA FS-CHC

ccuracy 0.9223 0.8193 0.8240 0.8371 0.8976

appa 0.8769 0.7113 0.7391 0.7623 0.8538

eduction (IS) 0.8372 0.9628 0.9454 0.9440 –

eduction (FS) 0.5671 – – – 0.5240

eduction (IFS) 0.9899 – – – -

ime 40914 1461 4294 4615 57747
features, less instances than the IS population, and less features
than the FS population.

However, the explanation is straightforward: Compared with
the IS population, the IFS population is able to select the best
features of the instances currently selected. The removal of noisy
features makes it possible to describe the entire training set with
fewer points, thus explaining why the IFS population does not
need to select as many instances as the IS population.

The situation is similar when compared with the FS population:
Having selected only relevant instances, the subsets selected by the
IFS population does not need to take into account every relevant
feature in the training set, but only a very reduced number of them.
However, the concrete set of features selected is strongly
influenced by the currently selected instances, thus the resulting
set of selected features is not stable between different trials.

5.5. Analysis of convergence

One of the most important issues in the development of any EA
is the analysis of the convergence of its population. If the EA does
not evolve in time, most of the time it would not be able to obtain
suitable solutions.

In what follows, we show a graphical representation of the
convergence capabilities of IFS-CoCo (Fig. 5).

To perform this analysis, we have selected two data sets: Car
and Sonar, because they have the greatest number of instances
and features, respectively, of the experimental study. The graphics
show a line representing the fitness value of the best individual of
each population of IFS-CoCo. The X-axis represents the number of
evaluations carried out, and the Y-axis represents the fitness value
currently achieved.

As can be seen in the graphics, the classical limit of 10,000
evaluations is enough for IFS-CoCo to converge to a stable solution
in the largest examples of our study. The interweaving of the
fitness values shows how each population cooperates to allow the
global algorithm to converge on good solutions, accepting worse
local solutions if it is necessary to improve the global result. This
trade-off between the fitness value of the populations, which
often improves the results that isolated populations could have
oCo on Car and Sonar data sets.

FS-SSGA FS-GGA IFS-CHC IFS-IGA IFS-HGA 1-NN

0.8755 0.8741 0.8605 0.8442 0.8632 0.8678

0.8104 0.8064 0.7950 0.7669 0.8397 0.7852

- – - – - –

0.5369 0.5362 – - – –

– - 97.51 98.01 0.6267 –

54819 55523 1442 22530 20082 -

ARTICLE IN PRESS

Table 13
Wilcoxon Signed-Ranks Test for high dimensional data sets comparison.

Accuracy Kappa

IS Algorithms Rþ R- P-value Rþ R- P-value

IFS-CoCo vs IS-CHC 21 0 0.031 21 0 0.031

IFS-CoCo vs IS-SSGA 21 0 0.031 21 0 0.031

IFS-CoCo vs IS-GGA 21 0 0.031 21 0 0.031

IFS-CoCo vs FS-CHC 19 2 0.093 20 1 0.062

IFS-CoCo vs FS-SSGA 21 0 0.031 21 0 0.031

IFS-CoCo vs FS-GGA 21 0 0.031 21 0 0.031

IFS-CoCo vs IFS-CHC 21 0 0.031 21 0 0.031

IFS-CoCo vs IFS-IGA 21 0 0.031 21 0 0.031

IFS-CoCo vs IFS-HGA 21 0 0.031 21 0 0.031

IFS-CoCo vs 1-NN 20 1 0.062 21 0 0.031

J. Derrac et al. / Pattern Recognition 43 (2010) 2082–2105 2095
achieved alone, is the main reason for the success of the
coevolutionary approach we have employed.

5.6. Analysis of the behavior of IFS-CoCo with high dimensional data

sets

Another aspect of our approach that remains unanswered is to
test its behavior when dealing with large data sets, specially those
with a greater number of attributes. It is important to ensure that
our approach is able to tackle these problems having less (or at
least, the same) drawbacks than the rest of isolated evolutionary
approaches.

To test this behavior, we have employed almost the same
experimental framework (see Section 4) that in the standard
study, but using the 6 high dimensional data sets described in
Table 2.

Table 12 summarizes the results achieved by our approach and
all the evolutionary isolated techniques (we also include results
from the 1-NN classifier). The best average result for each
performance measure is remarked in bold (the full results can
be found in Appendix B, in Tables 30–37). In addition, we have
performed a Wilcoxon Signed Ranks test to contrast these results
(Table 13).

From these tables, we can point out the following facts:
�
 IFS-CoCo also outperforms the rest of the methods when
applied in high dimensionality domains. In fact, it achieves the
best precision results, both in accuracy and kappa measures in
every data set, except for the Texture data set, where
differences are very low. The Wilcoxon test (Table 13) confirm
that IFS-CoCo outperforms the rest of the evolutionary
proposals, both in accuracy and kappa measures, with a level
of significance a¼ 0:1).

�
 IFS-CoCo also obtains better reduction rates in FS and IFS

populations. In the IS population, its reduction rate has
decreased.

�
 The time consumption in higher domains remains the same

than in the first study: IFS-CoCo is slower than IS and IFS
approaches, but it is faster than FS approaches.

Beyond these results, some general considerations about the
behavior of our approach when dealing with greater domains can
be obtained. Due to the employment of the CHC algorithm to
conduct the search process, the IS population has started to
experience some convergence problems when the size of its
chromosome has increased from a thousand to more than three
thousands genes. This is the reason of the decrease observed in
the reduction rates achieved by the IS population, which would
had need more evaluations to achieve reduction rates comparable
to those achieved by the rest of IS methods (however, note that
the IS population only has a third of the total evaluations to
accomplish this task, i.e, roughly 3333 evaluations. With a higher
number of evaluations, the reduction rates achieved would
become the same).

Finally, another consideration must be taken: What happens
when the ratio between instances and features ðN=MÞ becomes
extreme (very high, or very low)? The answer is that the exact
N=M ratio does not have a significant influence in the search
process, due to the use of a fixed number of evaluations in each
population (a third of them). I.e. the search will not be dominated
by the population with a great search space or so, because each
population will be able to generate the same number of solutions.
However, as we have just discussed, our approach is able to
manage an high quality search process, as far as the number of
evaluations given were enough. Therefore, if one of these values
(N or M) becomes very large and the number of evaluations given
does not increases, our approach (as well as the rest of
evolutionary ones) will not be able to achieve a high reduction
rate in the corresponding population.
5.7. Future trends of work

As a conclusion to the experimental study, we can also point
out some interesting topics, which may be taken as starting points
for future studies:

Scalability: A promising topic of future work would be to
perform a study on the scalability of IFS-CoCo and its application
to medium and large size data sets. Although our proposal is not
very inefficient in terms of the increment of features and
instances ðOðN2 �MÞÞ, its time complexity could be very high
when employed in large scale data sets.

In the field of IS, some strategies have appeared recently to
deal with this problems. [90] and [91] are representative
examples. However, they are not suitable for IFS-CoCo due to
the fact that they only try to split the set of instances, whereas
IFS-CoCo requires an explicit treatment of instances, features, and
both. Therefore, the development of a new strategy which fits
these requirements, and its integration with IFS-CoCo, would be
an interesting improvement for our approach.

Weighting schemes: The employment of weighting schemes in
an interesting way to preprocess data. Although it falls out of our
scope (is not a task of data reduction), it can be employed to
assess a given training set, increasing the accuracy rates obtained
by the k-NN classifier when employing it as training data. It is
possible to employ weighting schemes both over the features and
the instances of the training set [92].

New coevolutionary-based classifiers could be developed
within this scope: Some populations may be focused on obtaining
suitable weights for instances and/or features, employing a real-
coded EA, whereas other populations may still perform data
reduction tasks with binary-coded EAs, as IFS-CoCo does. Indeed,
it would be interesting to test the effects of the combination of
such different approaches on a concrete method, in terms of the
accuracy, reduction and stability of the solutions obtained.

Data complexity: A final topic for future studies falls in the data
complexity field [88,89]. This recent field of research tries to
characterize the different structures that data sets may show. One
of its most interesting applications would be to decide which type
of classifier could work better on a given problem.

IFS-CoCo can take advantage of such knowledge: For example,
it could be possible to diminish the importance of certain
populations, or even disable them, if a given problem requires it
(i.e. if a given problem is characterized as very sensitive to the set

ARTICLE IN PRESS

J. Derrac et al. / Pattern Recognition 43 (2010) 2082–21052096
of features employed to represent it, our approach would increase
the effort applied in its FS population, decreasing the resources
spent on the rest of its populations). New improvements of IFS-
CoCo may allow the user to specify which behavior IFS-CoCo
should show regarding the concrete kind of data set employed.
6. Concluding remarks

In this contribution, we have proposed a new approach based
on coevolution, to tackle IS, FS, and IFS problems simultaneously.
The employment of a cooperative scheme allows our approach to
apply three different data reduction techniques simultaneously,
acquiring all its advantages without causing interferences
between them, thanks to the employment of coevolution.

The results achieved by IFS-CoCo in the experimental study
performed have shown that it offers the best accuracy rates. These
results have been contrasted statistically, confirming the hypoth-
esis that it can outperform all the evolutionary methods selected.
Moreover, IFS-CoCo has obtained a greater reduction rate than
most of the remaining methods, showing its utility as an accurate
and effective data reduction technique.
Acknowledgments

We are grateful to the reviewers for identifying essential issues
and providing us with important and valuable feedback. We have
found the suggestions and comments in the reviews very useful in
improving the quality of this paper.
Appendix A. Description of the algorithms employed on the
experimental study

To complete the description of the experimental study, this
appendix will review the main characteristics of all the compar-
ison algorithms employed. For wider reference about SSGA and
GGA, see [13]. For the IGA model, see [63]. For the HGA model, see
[64].

A.1. GGA model for IS/FS

GGA is a well-known GA model. The basic idea in GGA is to
maintain a population of chromosomes, which encodes plausible
solutions to the particular problem that evolves over successive
iterations (generations) through a process of competition and
controlled variation. Each chromosome in the population has an
associated fitness to determine which chromosomes are to be
used to form new ones in the competition process. This is called
selection. The new ones are created using genetic operators such
as crossover and mutation.

The GGA algorithm consists of three operations:
1.
 evaluation of individual fitness;

2.
 formation of a gene pool (intermediate population) through

selection mechanism;

3.
 recombination through crossover and mutation operators.

The selection mechanism produces a new population with
copies of chromosomes from the previous population. The
number of copies received for each chromosome depends on its
fitness; chromosomes with higher fitness usually have a greater
chance of contributing copies to the new population. Then, the
crossover and mutation operators are applied to the copies.
Crossover takes two individuals called parents and produces
two new individuals called the offspring by swapping parts of the
parents. In its simplest form, the operator works by exchanging
substrings after a randomly selected crossover point. The cross-
over operator is not usually applied to all pairs of chromosomes in
the new population. A random choice is made, where the
likelihood of crossover being applied depends on probability
defined by a crossover rate.

Mutation serves to prevent premature loss of population
diversity by randomly sampling new points in the search space.
Mutation rates are kept small, however, otherwise the process
degenerates into a random search. In the case of bit strings,
mutation is applied by flipping one or more random bits in a
string with a probability equal to the mutation rate.

Termination may be triggered by reaching a maximum
number of generations or by finding an acceptable solution by
some criterion.

A.2. SSGA model for IS/FS

SSGA is another well-known GA model, In SSGAs, usually only
one or two offspring are produced in each generation. Parents are
selected to produce offspring and then a replacement/deletion
strategy defines which member of the population will be replaced
by the new offspring. The basic algorithm steps of SGA are the
following:
1.
 Select two parents from the population.

2.
 Create an offspring using crossover and mutation.

3.
 Evaluate the offspring with the fitness function.

4.
 Select an individual in, which may be replaced by the offspring.

5.
 Decide if this individual will be replaced.

In step 4, the replacement strategy chosen has been to replace
the worst individuals of the population. In step 5, the replacement
condition chosen has been for the replacement to be made only if
the new individual is better.

A.3. IGA model for IFS

IGA is an intelligent GA designed to tackle both IS and FS
problems simultaneously, by the introduction of a special
orthogonal cross operator. In fact, it is an improved GGA model
which introduces two new characteristics:
�
 A rank selection method, which always replace the worst
members of the population with the best offspring.

�
 An orthogonal crossover operator. This is the main feature of

IGA, and it was designed in order to improve the selection
of the best genes which will be used to form the chromos-
omes of children.

The high performance of the crossover operator arises from the
fact that it replaces the generate-and-test search for children
using a random combination of chromosomes with a systematic
reasoning search method using an intelligent combination of
selecting better individual genes. Thus, the quality of the search
procedure is improved.

A.4. HGA model for IFS

HGA is a hybrid GA which employs some local search
procedures to improve its results. It performs simultaneous IS
and FS procedures, but its objectives are to minimize the number

ARTICLE IN PRESS

J. Derrac et al. / Pattern Recognition 43 (2010) 2082–2105 2097
of features selected and to maximize the number of instances
selected (also trying to increase the accuracy rate).

The HGA algorithm can be divided into three phases:
Phase 1: A pure GA is applied to this phase. It includes an RTS

selection scheme and some mechanisms to manage diversity and
elitism (including an archive population and a dynamic analysis of
the diversity of the population).

Phase 2: By using a histogram of the frequency with which
each feature has been selected as present in each chromosome, a
feature selection process is carried out, in order to simplify the
problem and help the GA to converge.

Phase 3: The GA is applied again to the population. Also, in this
phase, some of the children generated in the actual generation are
tuned by using local search procedures, both in the features and
the instances’ search spaces.
Table 14
IFS-CoCo vs IS algorithms (Accuracy in training and test phases).

Alg IFS-CoCo IS-CHC IS-SSGA

Training Test Training Test Training

Aut 85:2371:22 77:7579:25 83:1072:60 74:5377:49 57:9174:91

Bal 87:2271:88 84:9575:22 78:6370:43 77:6272:12 95:9371:21

Bup 75:6673:13 67:05710:02 69:6371:48 60:6477:37 78:8474:25

Car 91:0970:98 90:2072:17 89:7771:43 89:5672:13 84:3272:75

Cle 63:3572:01 57:9979:06 61:1870:47 55:5676:62 62:7378:56

Der 98:7770:38 94:9373:62 98:2970:72 96:0173:53 91:0174:31

Ger 76:9471:02 71:8073:58 74:9870:65 70:4373:01 83:1372:71

Gla 77:0271:88 69:60710:36 75:6072:32 67:81712:54 69:1875:89

Hou 97:4270:58 94:6274:63 96:9270:69 94:4774:03 89:0473:90

Iri 96:0970:94 95:3375:33 92:7270:30 95:3373:27 95:5270:27

Mam 84:5070:57 83:2575:19 84:2970:75 83:2273:48 63:8874:33

Pim 78:7470:98 72:2774:16 75:9570:66 72:3875:44 82:4475:22

Son 97:1571:17 85:7075:99 94:6772:66 83:3178:74 73:6075:28

Spe 90:2570:93 78:6675:31 88:8171:96 76:16710:04 79:1079:75

Tic 85:4871:30 83:5175:95 82:1070:80 82:1174:82 86:7973:55

Veh 74:9770:99 70:8573:35 73:1371:14 68:8375:54 75:9774:75

Wis 97:8270:31 96:0972:15 85:3970:24 95:3772:41 82:62713:93

Zoo 98:5071:76 94:9775:22 98:0671:65 95:5876:49 82:2572:31

Avg. 86:4571:22 81:6475:59 83:5171:16 79:9475:50 79:6874:88

Table 15
IFS-CoCo vs IS algorithms (Kappa in training and test phases).

Alg IFS-CoCo IS-CHC IS-SSGA

Training Test Training Test Training

Aut 83:1071:72 69:7578:95 57:6172:90 51:0877:29 84:5972:90

Bal 74:9471:48 75:7875:12 82:7971:13 82:1972:22 18:8470:13

Bup 51:1973:53 31:15710:32 44:9370:78 12:6077:47 75:9771:68

Car 79:8970:95 77:8772:13 74:9372:03 71:9672:43 80:4671:73

Cle 35:8372:03 30:4379:02 37:6270:23 29:5276:92 67:1970:57

Der 98:4870:43 91:8273:92 97:4970:92 93:1673:53 36:2570:42

Ger 38:3070:82 23:3573:38 37:7171:15 21:2972:61 69:7670:85

Gla 69:0171:28 55:44710:12 65:1372:02 52:53712:74 75:1572:02

Hou 94:4870:68 87:0074:43 91:9970:59 86:9974:73 51:0170:99

Iri 96:8971:04 94:3774:83 98:1170:30 92:0073:07 93:4270:20

Mam 68:8770:66 65:8376:29 63:8670:95 61:8673:88 59:5170:85

Pim 50:5370:96 36:1874:36 56:7470:56 40:6574:94 72:7170:96

Son 94:1971:07 73:7675:31 74:9671:96 47:5579:44 73:7772:76

Spe 70:3670:83 26:0975:79 43:3872:66 18:3879:64 41:6872:06

Tic 69:3371:30 60:0275:69 49:4971:00 39:7975:52 81:1470:70

Veh 66:8570:91 60:8873:78 57:8271:14 48:8375:94 81:2571:04

Wis 94:4070:31 94:3772:70 94:7570:36 91:8872:21 45:0770:24

Zoo 95:1671:56 90:8274:94 87:0870:95 94:4176:89 95:0971:75

Avg. 73:9971:20 63:6175:62 67:5871:20 57:5975:64 66:8371:21
Despite the contradictory objectives in the number of instances
and features selected, HGA is able to work well on dual IS and FS
problems, being a suitable option to tackle these problems.
Appendix B. Full results of the experimental study

As we have mentioned, this appendix contains the full results
of the two largest studies performed, the standard one (Section
5.1) and the study with high dimensional data sets.

For the first study, Table 14 shows the average accuracy results
(and its standard deviations) in the training and test phases of IFS-
CoCo, the IS algorithms and the 1-NN method. The best results in
accuracy in the test phase are highlighted in bold. Table 15 shows
the results achieved with kappa. Table 16 shows the reduction
IS-GGA 1-NN

Test Training Test Training Test

59:83712:22 57:2173:12 56:0778:91 75:6671:21 77:4376:35

86:4074:32 93:5273:78 86:6672:77 78:9570:87 79:0476:46

62:2878:46 68:2577:63 61:5877:38 61:2271:37 61:0876:88

89:4172:45 85:5573:57 86:9071:99 86:0970:28 85:6571:81

53:6074:84 60:6674:46 55:9176:11 52:7770:96 53:1477:45

93:8274:01 85:5971:76 95:3672:57 95:6370:59 95:3573:45

70:8773:69 80:7574:16 70:7374:04 68:9770:76 70:5074:25

65:80711:77 60:5075:89 65:95713:19 70:7771:86 73:61711:91
93:8674:88 87:9173:57 93:5474:52 92:3970:82 92:1675:41

94:2274:27 87:9773:00 96:0074:42 95:4870:52 93:3375:16

79:9973:94 85:5875:14 79:8574:09 73:7770:87 74:7275:67

72:2073:59 83:1374:99 72:7174:54 70:7070:86 70:3373:53

79:77711:83 67:8975:74 78:4976:26 86:3271:08 85:5577:51

74:9178:12 72:1075:20 76:7578:31 69:4671:66 69:7076:55

75:0973:48 78:8773:69 72:5973:28 73:1370:57 73:0772:56

66:7174:38 67:6276:37 64:1173:31 69:4071:13 70:1075:60

96:1472:02 89:4879:88 96:3372:10 95:6970:34 95:5772:59

93:0676:50 66:3073:44 92:4876:40 92:0870:75 92:8176:57

78:2275:82 76:6074:74 77:8975:23 78:2570:92 78:5175:54

IS-GGA 1-NN

Test Training Test Training Test

55:73711:62 79:3372:50 53:2374:81 69:5471:31 69:4176:75

72:2474:02 61:6970:63 75:0871:21 63:0870:57 63:5177:06

21:3279:16 68:1871:28 23:2974:55 19:9871:37 19:5376:48

79:6871:75 75:6871:73 79:2073:05 66:4770:58 65:3871:71

27:0375:14 64:0270:37 23:6478:26 26:0771:26 27:3077:35

93:2074:41 9:2870:52 93:5074:51 94:5370:39 94:1872:75
22:8473:29 60:8370:45 25:2673:01 24:8270:46 28:0074:95
53:82711:37 85:8272:02 53:4376:09 60:4371:86 64:15711:81
86:9474:28 50:5170:89 85:5873:90 85:7870:52 86:5175:31

93:0074:27 94:5470:10 94:0070:07 93:2270:82 90:0075:16

58:3774:34 50:6670:95 58:0074:03 45:1470:67 45:7375:37

34:7573:49 60:3270:66 35:3275:52 34:4070:96 33:2673:93

59:80712:33 77:3972:96 72:9475:08 72:4271:18 70:7778:01

26:3178:22 49:8172:06 27:4979:55 13:7671:76 12:7577:05

43:6974:08 69:0670:60 42:1073:25 27:4670:27 27:0171:86

54:2574:38 65:6670:84 54:5974:95 59:1871:23 60:1075:10

92:7871:32 50:2270:35 93:14714:03 90:3970:24 90:1872:19

95:2075:80 27:3571:65 96:2372:31 89:5570:75 90:4376:77

59:5075:74 61:1371:14 60:3374:90 57:5770:90 57:6875:53

ARTICLE IN PRESS

Table 18
IFS-CoCo vs FS algorithms (Accuracy in training and test phases).

Alg IFS-CoCo FS-CHC FS-SSGA FS-GGA 1-NN

Training Test Training Test Training Test Training Test Training Test

Aut 85:2371:22 77:7579:25 78:2873:49 77:9178:79 85:6378:70 83:38711:39 85:6978:93 82:90719:18 75:6671:21 77:4376:35

Bal 87:2271:88 84:9575:22 74:7077:14 74:7978:49 75:6570:87 71:0376:46 79:6570:87 72:6676:46 78:9570:87 79:0476:46

Bup 75:6673:13 67:05710:02 62:2271:48 62:5178:98 64:8171:53 60:58710:57 64:8071:59 60:78710:57 61:2271:37 61:0876:88

Car 91:0970:98 90:2072:17 90:6870:35 90:6871:43 82:1170:28 81:8971:73 82:1170:28 81:8971:73 86:0970:28 85:6571:81

Cle 63:3572:01 57:9979:06 50:2571:00 50:3073:11 58:7170:85 50:3874:89 58:6870:97 49:9675:59 52:7770:96 53:1477:45

Der 98:7770:38 94:9373:62 93:7470:41 94:2873:83 97:7174:74 94:2875:23 98:3971:08 93:1773:80 95:6370:59 95:3573:45

Ger 76:9471:02 71:8073:58 70:6071:13 69:7074:58 72:8671:17 69:2373:53 72:8470:72 68:9374:98 68:9770:76 70:5074:25

Gla 77:0271:88 69:60710:36 71:8071:69 71:68712:58 77:6671:76 70:39713:85 77:6871:74 70:54713:11 70:7771:86 73:61711:91

Hou 97:4270:58 94:6274:63 94:7070:33 94:2473:45 81:14712:61 82:24713:38 78:44711:59 79:7979:91 92:3970:82 92:1675:41

Iri 96:0970:94 95:3375:33 96:0070:82 96:0074:42 94:9670:80 96:6773:33 94:9670:80 96:0073:27 95:4870:52 93:3375:16

Mam 84:5070:57 83:2575:19 75:6571:40 75:6575:76 57:9279:79 54:6179:48 58:4678:39 55:7278:57 73:7770:87 74:7275:67

Pim 78:7470:98 72:2774:16 68:8670:52 68:0074:96 71:9070:49 67:3175:06 71:9070:49 67:3175:06 70:7070:86 70:3373:53

Son 97:1571:17 85:7075:99 87:9871:95 86:5379:23 95:6670:56 84:48710:38 96:9271:44 87:1177:65 86:3271:08 85:5577:51

Spe 90:2570:93 78:6675:31 72:6673:14 73:5174:85 86:1471:42 73:4577:56 86:6170:99 72:9475:91 69:4671:66 69:7076:55

Tic 85:4871:30 83:5175:95 82:7870:53 82:3372:46 69:7871:09 69:5272:03 70:0370:69 69:9172:33 73:1370:57 73:0772:56

Veh 74:9770:99 70:8573:35 70:5870:77 70:9775:14 74:8470:68 73:0173:71 74:8870:43 72:3874:68 69:4071:13 70:1075:60

Wis 97:8270:31 96:0972:15 93:7370:39 95:2672:28 96:4870:48 95:2372:23 96:4770:61 95:0972:23 95:6970:34 95:5772:59

Zoo 98:5071:76 94:9775:22 95:1471:12 91:3974:79 61:63713:11 63:07714:56 59:63715:47 61:78712:30 92:0870:75 92:8176:57

Avg. 86:4571:22 81:6475:59 79:4671:54 79:2175:51 78:0973:38 74:4977:19 78:2373:17 74:3877:07 78:2570:92 78:5175:54

Table 17
Time elapsed (IS methods).

Algorithms IFS-CoCo IS-CHC IS-SSGA IS-GGA

Aut 17.76 3.86 7.38 6.72

Bal 69.58 13.28 22.64 28.03

Bup 24.27 4.66 10.19 10.16

Car 884.80 97.49 221.54 287.16

Cle 31.87 3.41 7.60 8.03

Der 93.83 7.72 10.42 13.03

Ger 555.26 39.12 93.98 119.79

Gla 14.89 2.95 5.29 5.42

Hou 74.04 6.79 10.73 14.37

Iri 5.46 1.15 1.70 1.63

Mam 223.67 25.42 51.32 73.55

Pim 197.61 20.44 44.31 53.76

Son 44.05 5.62 9.22 9.03

Spe 57.05 4.65 6.94 8.45

Tic 304.43 33.86 97.94 117.97

Veh 300.99 33.10 75.27 96.33

Wis 180.22 13.26 24.39 39.89

Zoo 3.88 1.31 1.65 1.25

Avg. 171.31 17.67 39.03 49.70

Table 16
Reduction rates achieved (IS methods).

Algorithms IFS-CoCo IS-CHC IS-SSGA IS-GGA

Aut 99.62 96.70 86.27 90.10

Bal 97.51 95.06 95.38 94.61

Bup 97.97 94.10 90.84 93.39

Car 95.18 93.85 93.50 90.95

Cle 98.02 95.75 94.76 96.71

Der 99.88 96.60 95.64 96.19

Ger 97.39 95.78 93.81 93.37

Gla 98.60 95.92 89.60 92.49

Hou 99.11 96.69 97.36 97.44

Iri 95.93 95.83 95.01 95.60

Mam 98.53 96.82 97.42 95.03

Pim 98.38 96.02 94.56 94.42

Son 99.36 97.32 87.54 89.99

Spe 98.13 95.95 95.71 96.60

Tic 98.61 97.33 90.62 91.14

Veh 96.98 96.23 90.41 91.27

Wis 99.38 97.25 99.00 98.55

Zoo 98.72 97.85 87.09 88.78

Avg. 98.18 96.17 93.03 93.70

J. Derrac et al. / Pattern Recognition 43 (2010) 2082–21052098

ARTICLE IN PRESS

Table 19
IFS-CoCo vs FS algorithms (Kappa in training and test phases).

Alg IFS-CoCo FS-CHC FS-SSGA FS-GGA 1-NN

Training Test Training Test Training Test Training Test Training Test

Aut 83:1071:72 69:7578:95 81:6973:19 72:3678:49 72:9879:00 70:70711:59 66:1379:23 58:72719:48 69:5471:31 69:4176:75

Bal 74:9471:48 75:7875:12 63:0877:44 63:5178:19 63:0870:67 63:5176:26 63:0870:77 63:5176:56 63:0870:57 63:5177:06

Bup 51:1973:53 31:15710:32 29:9971:18 24:1778:98 27:0171:63 18:21710:27 26:9471:39 18:21710:57 19:9871:37 19:5376:48

Car 79:8970:95 77:8772:13 78:8070:25 78:7171:23 54:5770:08 54:2572:03 54:5770:28 54:2571:73 66:4770:58 65:3871:71

Cle 35:8372:03 30:4379:02 34:9371:30 21:6473:01 35:1371:05 27:2875:09 35:6070:87 23:4475:69 26:0771:26 27:3077:35

Der 98:4870:43 91:8273:92 98:3770:71 93:8773:93 95:6474:54 91:8175:23 97:8070:98 92:4874:10 94:5370:39 94:1872:75

Ger 38:3070:82 23:3573:38 36:3071:13 26:2774:78 33:6671:37 19:2973:53 36:8470:52 26:7274:68 24:8270:46 28:0074:95

Gla 69:0171:28 55:44710:12 70:1471:39 60:24712:78 69:8472:06 62:46713:85 69:7471:64 63:55712:91 60:4371:86 64:15711:81

Hou 94:4870:68 87:0074:43 92:2870:03 84:0773:75 53:56712:41 46:72713:28 53:48711:39 53:6479:91 85:7870:52 86:5175:31

Iri 96:8971:04 94:3774:83 94:0070:62 93:0074:12 92:4470:50 95:0073:13 92:4470:70 94:0073:47 93:2270:82 90:0075:16

Mam 68:8770:66 65:8376:29 51:4171:60 48:6875:56 21:8779:69 16:2679:18 18:4978:39 12:0578:67 45:1470:67 45:7375:37

Pim 50:5370:96 36:1874:36 34:5970:72 25:9974:76 38:2570:19 28:0174:86 38:2570:49 28:0174:96 34:4070:96 33:2673:93

Son 94:1971:07 73:7675:31 91:6071:95 72:5779:33 91:5070:76 72:85710:68 93:2371:54 71:4577:65 72:4271:18 70:7778:01

Spe 70:3670:83 26:0975:79 62:4073:04 22:8775:15 59:1771:12 28:1077:76 59:8070:69 19:2876:11 13:7671:76 12:7577:05

Tic 69:3371:30 60:0275:69 59:3170:43 57:4872:46 15:3771:09 15:9471:73 18:3070:89 17:4572:33 27:4670:27 27:0171:86

Veh 66:8570:91 60:8873:78 66:6670:97 61:6875:44 66:3870:88 61:2173:41 66:5970:43 62:1574:98 59:1871:23 60:1075:10

Wis 94:4070:31 94:3772:70 92:3370:39 89:5272:28 92:4370:58 89:2272:23 92:2670:51 89:2272:03 90:3970:24 90:1872:19

Zoo 95:1671:56 90:8274:94 97:7071:02 94:9474:59 45:71713:01 47:76714:86 45:26715:17 44:18712:30 89:5570:75 90:4376:77

Avg. 73:9971:20 63:6175:62 68:6471:52 60:6475:49 57:1573:37 50:4877:17 57:1673:10 49:5777:12 57:5770:90 57:6875:53

Table 20
Reduction rates achieved (FS methods).

Algorithms IFS-CoCo FS-CHC FS-SSGA FS-GGA

Aut 69.20 68.27 66.39 67.44

Bal 65.00 3.33 4.55 4.21

Bup 38.33 30.00 31.56 29.34

Car 16.67 16.67 20.04 24.32

Cle 54.62 48.72 48.89 48.32

Der 55.88 56.37 54.85 55.88

Ger 43.00 42.33 42.67 41.99

Gla 41.11 44.07 42.01 45.37

Hou 66.25 62.29 63.45 68.69

Iri 57.50 40.00 52.25 48.75

Mam 78.00 50.00 58.64 61.50

Pim 65.00 53.75 57.32 55.67

Son 57.17 59.50 58.43 59.25

Spe 59.09 55.76 56.71 56.05

Tic 24.44 22.22 27.35 26.34

Veh 42.78 45.52 46.23 44.57

Wis 45.56 41.11 40.59 40.87

Zoo 56.32 55.45 60.34 62.28

Avg. 52.00 44.19 46.24 46.71

Table 21
Time elapsed (FS methods).

Algorithms IFS-CoCo FS-CHC FS-SSGA FS-GGA

Aut 17.76 25.10 29.53 28.73

Bal 69.58 88.33 76.04 75.02

Bup 24.27 32.71 30.68 30.88

Car 884.80 963.64 658.31 694.10

Cle 31.87 37.46 52.00 50.72

Der 93.83 96.62 108.50 109.44

Ger 555.26 607.66 597.15 577.39

Gla 14.89 20.03 20.00 19.49

Hou 74.04 97.19 89.55 95.14

Iri 5.46 6.91 5.91 5.88

Mam 223.67 236.26 289.70 289.98

Pim 197.61 231.68 207.48 201.59

Son 44.05 58.34 62.08 60.75

Spe 57.05 71.35 79.53 74.89

Tic 304.43 361.16 360.59 366.98

Veh 300.99 357.91 373.93 367.86

Wis 180.22 178.57 202.59 195.08

Zoo 3.88 5.53 5.60 5.17

Avg. 171.31 193.14 180.51 180.50

J. Derrac et al. / Pattern Recognition 43 (2010) 2082–2105 2099

ARTICLE IN PRESS

Table 22
IFS-CoCo vs IFS algorithms (Accuracy in training and test phases).

Alg IFS-CoCo IFS-CHC IGA HGA 1-NN

Training Test Training Test Training Test Training Test Training Test

Aut 85:2371:22 77:7579:25 71:8971:80 70:03710:05 71:9276:93 68:41713:00 78:0573:99 78:01711:72 75:6671:21 77:4376:35

Bal 87:2271:88 84:9575:22 90:2070:67 88:3272:34 52:0078:15 52:5279:58 83:8575:54 82:7675:82 78:9570:87 79:0476:46

Bup 75:6673:13 67:05710:02 73:8471:55 69:2978:32 59:8078:99 54:6777:75 66:1871:98 65:4778:16 61:2271:37 61:0876:88

Car 91:0970:98 90:2072:17 90:7370:80 89:3571:77 88:7971:35 86:8570:36 89:5470:55 88:8672:95 86:0970:28 85:6571:81

Cle 63:3572:01 57:9979:06 62:5470:57 58:2074:44 42:26711:13 42:7277:13 58:7371:20 56:2374:74 52:7770:96 53:1477:45

Der 98:7770:38 94:9373:62 97:3370:40 95:5273:28 95:3279:73 94:31712:12 97:1270:51 95:4276:01 95:6370:59 95:3573:45

Ger 76:9471:02 71:8073:58 75:0971:62 72:7772:21 73:4774:31 70:8076:18 72:4370:93 70:7778:69 68:9770:76 70:5074:25

Gla 77:0271:88 69:60710:36 73:9772:31 67:30710:25 52:0478:23 57:13710:63 72:3471:39 70:53710:77 70:7771:86 73:61711:91

Hou 97:4270:58 94:6274:63 94:7970:76 93:9973:62 66:79713:27 67:65716:07 94:1070:33 93:6574:38 92:3970:82 92:1675:41

Iri 96:0970:94 95:3375:33 96:9470:66 94:8974:99 89:92719:68 89:33710:83 96:7570:81 95:1676:57 95:4870:52 93:3375:16

Mam 84:5070:57 83:2575:19 82:1170:81 81:2175:54 69:40711:68 68:99713:03 81:5571:30 80:3675:14 73:7770:87 74:7275:67

Pim 78:7470:98 72:2774:16 78:7670:54 73:6774:51 57:6378:98 58:6476:88 77:3770:66 74:1775:59 70:7070:86 70:3373:53

Son 97:1571:17 85:7075:99 85:4072:24 75:6179:42 81:21712:07 78:7878:60 84:3471:75 77:42710:43 86:3271:08 85:5577:51

Spe 90:2570:93 78:6675:31 84:5671:60 76:7176:05 74:44711:20 71:9179:90 79:8774:14 72:0576:92 69:4671:66 69:7076:55

Tic 85:4871:30 83:5175:95 78:4472:30 76:3872:45 55:1672:38 65:3571:32 78:1870:23 77:9674:78 73:1370:57 73:0772:56

Veh 74:9770:99 70:8573:35 72:1370:74 67:5373:89 53:89710:77 54:33710:76 71:2170:99 70:9872:38 69:4071:13 70:1075:60

Wis 97:8270:31 96:0972:15 97:1870:32 95:5271:96 67:8974:27 68:8873:21 97:6973:94 95:6973:12 95:6970:34 95:5772:59

Zoo 98:5071:76 94:9775:22 94:7670:98 89:7277:45 64:1172:76 69:5074:53 95:1571:62 93:1776:90 92:0870:75 92:8176:57

Avg. 86:4571:22 81:6475:59 83:3771:15 79:7875:14 67:5678:66 67:8278:44 81:9171:77 79:9376:39 78:2570:92 78:5175:54

Table 23
IFS-CoCo vs IFS algorithms (Kappa in training and test phases).

Alg IFS-CoCo IFS-CHC IGA HGA 1-NN

Training Test Training Test Training Test Training Test Training Test

Aut 83:1071:72 69:7578:95 63:8171:60 60:06710:25 38:4476:83 27:46713:00 83:8173:79 62:77711:82 69:5471:31 69:4176:75

Bal 74:9471:48 75:7875:12 81:8770:57 78:6572:04 54:0578:05 32:3879:48 76:8575:74 69:3475:82 63:0870:57 63:5177:06

Bup 51:1973:53 31:15710:32 44:1571:45 34:6578:32 27:6479:19 20:8477:95 40:3871:68 27:6578:36 19:9871:37 19:5376:48

Car 79:8970:95 77:8772:13 79:1270:80 74:8171:77 62:1471:35 22:6170:56 78:3270:75 74:9272:85 66:4770:58 65:3871:71

Cle 35:8372:03 30:4379:02 34:6270:37 26:0274:54 19:70711:33 11:0177:03 33:1271:30 22:9274:64 26:0771:26 27:3077:35

Der 98:4870:43 91:8273:92 96:6170:20 95:2073:18 63:8579:63 53:62711:82 96:7370:31 94:7075:91 94:5370:39 94:1872:75

Ger 38:3070:82 23:3573:38 34:4171:72 27:0772:41 16:7074:11 14:6876:28 30:1170:73 22:3478:79 24:8270:46 28:0074:95

Gla 69:0171:28 55:44710:12 62:8472:61 51:18710:55 45:2577:93 30:02710:43 61:8471:09 53:18711:07 60:4371:86 64:15711:81

Hou 94:4870:68 87:0074:43 89:7070:46 87:2173:52 62:31712:97 55:60715:77 88:9870:53 87:0274:58 85:7870:52 86:5175:31

Iri 96:8971:04 94:3774:83 96:2270:76 92:0074:89 80:09719:58 76:00710:53 97:0170:51 91:8776:47 93:2270:82 90:0075:16

Mam 68:8770:66 65:8376:29 64:2071:11 61:5475:84 46:72711:38 47:39712:73 60:7371:10 52:8375:34 45:1470:67 45:7375:37

Pim 50:5370:96 36:1874:36 51:6170:44 38:6274:71 40:2179:08 25:2076:98 50:5670:66 40:1275:59 34:4070:96 33:2673:93

Son 94:1971:07 73:7675:31 69:8572:44 46:8379:12 51:58712:17 19:8378:70 72:8571:55 47:40710:73 72:4271:18 70:7778:01

Spe 70:3670:83 26:0975:79 43:9871:80 16:0876:35 33:24711:50 8:4879:90 38:7673:84 11:0376:92 13:7671:76 12:7577:05

Tic 69:3371:30 60:0275:69 52:4472:50 43:9272:65 39:5172:08 23:9271:12 53:1170:23 49:2574:68 27:4670:27 27:0171:86

Veh 66:8570:91 60:8873:78 64:0170:84 57:1073:99 48:40711:07 47:20710:46 61:9770:79 61:4872:58 59:1871:23 60:1075:10

Wis 94:4070:31 94:3772:70 94:2570:12 90:3271:86 81:2574:57 81:7173:31 94:0173:74 90:9273:02 90:3970:24 90:1872:19

Zoo 95:1671:56 90:8274:94 92:8771:28 84:7777:35 64:9072:66 21:0774:33 93:1771:42 90:7776:60 89:5570:75 90:4376:77

Avg. 73:9971:20 63:6175:62 67:5971:17 59:2275:19 48:6778:64 34:3978:35 67:3571:66 58:3676:43 57:5770:90 57:6875:53

Table 24
Reduction rates achieved (IFS methods).

Algorithms IFS-CoCo IFS-CHC IGA HGA

Aut 99.19 98.87 98.90 72.34

Bal 98.85 98.42 98.78 11.34

Bup 99.37 99.21 99.05 33.45

Car 98.96 97.76 98.65 25.77

Cle 99.50 99.45 99.52 59.20

Der 99.33 99.14 99.23 15.34

Ger 99.85 99.89 99.87 54.05

Gla 98.30 97.47 97.95 51.04

Hou 99.87 99.88 99.85 63.09

Iri 98.17 97.91 97.97 45.67

Mam 99.86 99.86 99.84 60.85

Pim 99.74 99.67 99.61 63.87

Son 99.72 99.68 99.54 70.01

Spe 99.88 99.87 99.86 62.41

Tic 99.33 99.02 99.43 30.45

Veh 99.11 99.03 98.85 53.82

Wis 99.68 99.74 99.70 49.56

Zoo 95.32 95.40 97.67 69.43

Avg. 99.11 98.90 99.13 49.54

Table 25
Time elapsed (IFS methods).

Algorithms IFS-CoCo IFS-CHC IGA HGA

Aut 17.76 3.90 13.21 14.27

Bal 69.58 17.16 77.67 39.72

Bup 24.27 5.04 22.91 15.64

Car 884.80 89.31 669.95 421.16

Cle 31.87 4.35 22.67 26.38

Der 93.83 8.37 48.78 58.12

Ger 555.26 40.85 333.55 275.34

Gla 14.89 3.11 8.48 12.84

Hou 74.04 7.71 45.99 41.63

Iri 5.46 1.27 2.70 2.36

Mam 223.67 26.64 190.28 162.85

Pim 197.61 23.80 134.60 101.11

Son 44.05 4.58 21.73 25.49

Spe 57.05 4.88 31.53 59.78

Tic 304.43 33.50 221.41 192.29

Veh 300.99 35.67 226.63 162.20

Wis 180.22 18.11 117.73 107.65

Zoo 3.88 1.33 1.89 1.60

Avg. 171.31 18.31 121.76 95.58

J. Derrac et al. / Pattern Recognition 43 (2010) 2082–21052100

ARTICLE IN PRESS

Table 26
IFS-CoCo vs Classical algorithms (Accuracy in training and test phases).

Alg IFS-CoCo DROP3 ICF Relief LVW

Training Test Training Test Training Test Training Test Training Test

Aut 85:2371:22 77:7579:25 91:0871:64 62:2978:71 92:0072:43 58:8176:69 77:2971:64 78:1678:54 83:8073:90 78:1779:71

Bal 87:2271:88 84:9575:22 88:0873:64 81:7773:82 97:9971:86 70:2675:52 54:4771:23 54:4075:10 78:9570:87 79:0476:46

Bup 75:6673:13 67:05710:02 79:4573:90 60:8677:15 68:5874:09 53:2979:87 55:3672:33 52:46710:38 65:0971:38 61:3779:65

Car 91:0970:98 90:2072:17 92:1172:04 72:2174:30 96:7371:15 78:4273:44 71:9571:32 71:6571:32 82:1170:28 81:8971:73

Cle 63:3572:01 57:9979:06 85:1273:36 49:4774:24 80:5476:26 50:1975:63 45:9877:74 42:8579:53 57:6575:50 44:8879:85

Der 98:7770:38 94:9373:62 88:0273:56 92:9374:20 96:5172:03 90:5273:61 96:6970:67 96:7373:37 97:2172:55 93:7373:83

Ger 76:9471:02 71:8073:58 77:9972:19 67:2074:09 73:5972:59 66:3073:90 63:0272:11 63:9076:20 73:0770:83 69:8073:71

Gla 77:0271:88 69:60710:36 83:5974:73 65:7179:08 79:0574:56 65:21712:58 74:7171:26 76:25710:08 77:6871:76 70:85712:86

Hou 97:4270:58 94:6274:63 95:5375:16 93:6277:60 90:6572:83 89:6476:46 92:6472:50 92:1876:78 91:9072:80 92:4073:75

Iri 96:0970:94 95:3375:33 98:4977:82 94:6774:67 99:5870:84 93:3376:80 94:4470:50 94:6772:67 95:2670:82 94:6774:00

Mam 84:5070:57 83:2575:19 84:4172:53 75:0375:57 90:0271:85 75:3474:20 71:3472:09 71:3974:49 71:8676:66 69:7277:55

Pim 78:7470:98 72:2774:16 80:8473:05 73:1173:40 79:0371:97 69:3273:28 53:9178:48 67:8579:22 71:9070:49 67:8374:99

Son 97:1571:17 85:7075:99 89:7073:85 77:79711:10 85:7773:00 66:33712:05 88:0971:47 86:02710:19 93:2270:48 91:8377:14

Spe 90:2570:93 78:6675:31 79:8972:76 69:73713:17 73:2878:65 67:92713:97 76:4971:35 73:53710:68 82:5270:61 74:5377:76

Tic 85:4871:30 83:5175:95 92:3575:36 69:3178:00 94:8470:93 72:9772:75 65:3670:15 65:3571:32 70:4070:47 70:3672:53

Veh 74:9770:99 70:8573:35 83:4971:90 65:9974:15 82:5572:15 63:3675:17 71:0471:11 69:8573:25 74:4370:54 71:6474:26

Wis 97:8270:31 96:0972:15 96:78711:13 95:1375:35 95:1675:80 92:70715:70 95:4470:41 95:7172:78 96:5570:54 95:2872:30

Zoo 98:5071:76 94:9775:22 98:1375:74 92:6477:70 99:7970:64 93:2275:69 93:9172:06 91:9777:16 89:1676:22 87:50711:01

Avg. 86:4571:22 81:6475:59 88:0674:13 75:5376:46 87:5472:98 73:1777:07 74:5672:13 74:7276:28 80:7172:04 77:5376:28

Table 27
IFS-CoCo vs Classical algorithms (Kappa in training and test phases).

Alg IFS-CoCo DROP3 ICF Relief LVW

Training Test Training Test Training Test Training Test Training Test

Aut 83:1071:72 69:7578:95 88:5271:54 51:5778:51 89:6672:53 44:7276:99 70:5171:74 71:7678:54 78:9473:90 71:9579:71

Bal 74:9471:48 75:7875:12 68:1773:64 66:2173:72 55:9071:86 44:9775:62 20:0871:23 20:2375:10 63:0870:87 63:5177:06

Bup 51:1973:53 31:15710:32 55:3573:90 16:5776:85 33:8073:99 4:9779:77 9:3572:23 3:64710:38 27:8771:38 20:3379:65

Car 79:8970:95 77:8772:13 87:2372:14 34:8574:40 94:5871:15 58:1573:54 11:6271:32 10:3171:02 54:5770:28 54:2571:43

Cle 35:8372:03 30:4379:02 77:3273:46 21:4574:24 68:9776:16 22:2575:93 11:0077:84 9:5479:23 34:4775:50 16:0979:85

Der 98:4870:43 91:8273:92 89:8773:56 91:1473:90 84:9971:93 85:7873:91 95:8670:77 95:9073:07 96:5072:55 92:1573:63

Ger 38:3070:82 23:3573:38 54:1072:29 22:1073:99 43:2872:59 24:0773:60 11:7672:21 13:3176:50 34:4970:83 27:7973:61

Gla 69:0171:28 55:44710:12 77:7974:83 53:0178:78 72:6474:56 46:88712:68 65:5371:36 67:4879:78 69:8471:76 60:87712:56

Hou 94:4870:68 87:0074:43 62:3375:16 72:5477:70 80:2572:93 78:9476:56 84:4672:40 83:7576:58 82:8072:80 83:8173:55

Iri 96:8971:04 94:3774:83 95:6777:92 93:0074:67 96:1370:94 92:5076:60 91:6770:40 92:0072:97 92:8970:82 92:0074:20

Mam 68:8770:66 65:8376:29 68:7972:43 49:5775:37 80:0071:95 50:3074:10 42:1571:99 42:3574:29 43:6076:66 39:2277:25

Pim 50:5370:96 36:1874:36 61:4872:95 32:9673:20 57:0872:07 26:6973:58 9:6478:58 10:9979:42 38:1170:49 28:8574:99

Son 94:1971:07 73:7675:31 79:3073:75 55:09711:00 70:4773:00 34:07711:85 75:9471:57 71:57710:09 86:3070:48 83:4676:84

Spe 70:3670:83 26:0975:79 51:4172:76 17:91713:17 45:3278:75 5:79714:27 31:6871:35 27:16710:58 47:4970:61 28:8077:46

Tic 69:3371:30 60:0275:69 72:8775:26 21:0078:10 83:2570:93 27:9472:75 37:4670:05 15:4871:32 39:3670:47 19:0972:43

Veh 66:8570:91 60:8873:78 77:5171:90 47:9574:05 76:6872:05 51:1175:07 61:3771:01 59:7973:05 65:8970:54 62:1674:16

Wis 94:4070:31 94:3772:70 96:61711:23 89:3475:15 93:2775:80 88:53715:50 89:8670:51 90:4972:68 92:3770:54 89:5372:50

Zoo 95:1671:56 90:8274:94 92:1875:64 90:2778:00 93:2570:74 90:7475:79 86:6771:96 89:4177:06 85:7676:22 83:40711:31

Avg. 73:9971:20 63:6175:62 75:3674:13 51:4776:38 73:3173:00 48:8077:12 50:3772:14 48:6276:20 63:0272:04 56:5276:23

Table 28
Reduction rates achieved (Classical methods).

Alg IFS-CoCo (IS) IFS-CoCo (FS) DROP3 ICF Relief LVW

Aut 99.62 69.20 57.57 51.60 19.99 47.20

Bal 97.51 65.00 86.76 93.96 25.00 0.00

Bup 97.97 38.33 70.05 70.46 51.66 28.33

Car 95.18 16.67 88.34 85.55 46.67 16.67

Cle 98.02 54.62 83.17 79.72 72.31 48.46

Der 99.88 55.88 92.32 70.34 18.24 45.59

Ger 97.39 43.00 78.36 73.60 71.50 42.01

Gla 98.60 41.11 74.15 67.75 17.78 44.44

Hou 99.11 66.25 93.00 87.51 35.62 63.75

Iri 95.93 57.50 92.30 64.22 10.00 19.99

Mam 98.53 78.00 82.09 57.69 54.00 26.00

Pim 98.38 65.00 82.13 77.29 77.50 46.25

Son 99.36 57.17 75.91 71.21 58.50 52.17

Spe 98.13 59.09 83.39 89.22 44.55 52.95

Tic 98.61 24.44 92.87 70.90 54.44 22.22

Veh 96.98 42.78 77.27 69.16 43.33 44.99

Wis 99.38 45.56 97.47 95.28 3.33 34.44

Zoo 98.72 56.32 83.51 43.60 16.25 31.25

Avg. 98.18 52.00 82.81 73.28 40.04 37.04

J. Derrac et al. / Pattern Recognition 43 (2010) 2082–2105 2101

ARTICLE IN PRESS

Table 29
Time elapsed (Classical methods).

Alg IFS-CoCo DROP3 ICF Relief LVW

Aut 17.76 0.06 0.02 0.07 27.34

Bal 69.58 0.28 0.05 0.21 58.56

Bup 24.27 0.05 0.03 0.05 26.34

Car 884.80 2.83 0.53 2.64 585.21

Cle 31.87 0.05 0.03 0.09 30.83

Der 93.83 0.24 0.08 0.17 118.39

Ger 555.26 0.63 0.28 0.54 519.59

Gla 14.89 0.05 0.02 0.06 12.12

Hou 74.04 0.38 0.08 0.26 81.76

Iri 5.46 0.06 0.02 0.04 3.55

Mam 223.67 0.59 0.19 0.47 183.84

Pim 197.61 0.28 0.11 0.23 146.32

Son 44.05 0.08 0.03 0.06 102.97

Spe 57.05 0.09 0.05 0.07 138.40

Tic 304.43 0.66 0.17 0.73 255.18

Veh 300.99 0.47 0.20 1.05 273.94

Wis 180.22 1.09 0.13 0.92 140.83

Zoo 3.88 0.03 0.02 0.03 4.65

Avg. 171.31 0.44 0.11 0.43 150.55

Table 30
IFS-CoCo vs IS algorithms (Accuracy in training and test phases, high size data sets).

Alg IFS-CoCo IS-CHC IS-SSGA IS-GGA 1-NN

Training Test Training Test Training Test Training Test Training Test

Che 96:9170:60 96:5672:45 87:8170:61 85:2774:45 92:0470:61 85:0073:15 88:7770:59 86:5672:55 84:5670:35 84:7072:65

Mov 90:5271:69 86:6677:34 71:6771:68 65:0077:37 83:3371:69 63:8977:35 79:3271:69 63:8977:35 81:4871:42 81:9477:35

Sat 91:5170:49 91:2970:97 88:0770:47 87:8770:95 91:5670:47 89:7470:98 90:3570:49 90:9870:98 90:8570:41 90:5870:99

Spa 93:6870:46 93:6972:19 87:9970:48 88:4872:19 91:2370:50 86:9672:20 89:8570:47 88:9172:19 89:9970:43 89:4572:23

Spl 87:7070:54 86:8371:30 73:6370:59 71:1671:33 82:3470:56 73:3571:33 79:0370:55 76:8071:30 75:2470:50 74:9571:33

Tex 98:9970:57 98:3671:46 94:0070:55 93:8271:47 98:1470:57 95:4571:46 97:2970:56 95:0971:47 99:0170:52 99:0571:47

Avg. 93:2270:73 92:2372:62 83:8670:73 81:9372:96 89:7770:73 82:4072:75 87:4470:73 83:7172:64 87:9370:61 86:7872:67

Table 31
IFS-CoCo vs FS algorithms (Accuracy in training and test phases, high size data sets).

Alg IFS-CoCo FS-CHC FS-SSGA FS-GGA 1-NN

Training Test Training Test Training Test Training Test Training Test

Che 96:9170:60 96:5672:45 98:6170:57 95:4372:45 78:4870:57 82:5072:65 78:5870:58 81:5673:85 84:5670:35 84:7072:65

Mov 90:5271:69 86:6677:34 92:5971:69 80:5677:38 87:6571:65 77:7877:37 87:0471:65 77:7877:35 81:4871:42 81:9477:35

Sat 91:5170:49 91:2970:97 91:7070:49 91:0770:97 91:6670:50 90:2070:97 91:7070:47 90:3670:96 90:8570:41 90:5870:99

Spa 93:6870:46 93:6972:19 93:5270:50 92:3972:19 91:9570:48 91:7472:19 92:0270:47 92:3972:22 89:9970:43 89:4572:23

Spl 87:7070:54 86:8371:30 86:5270:57 80:5671:33 88:4070:57 84:9571:31 87:2270:57 84:0171:34 75:2470:50 74:9571:33

Tex 98:9970:57 98:3671:46 99:4170:56 98:5571:46 99:3170:58 98:1171:47 99:4370:58 98:3471:50 99:0170:52 99:0571:47

Avg. 93:2270:73 92:2372:62 93:7370:73 89:7672:63 89:5870:72 87:5572:66 89:3370:72 87:4172:87 87:9370:61 86:7872:67

Table 32
IFS-CoCo vs IFS algorithms (Accuracy in training and test phases, high size data sets).

Alg IFS-CoCo IFS-CHC IFS-IGA IFS-HGA 1-NN

Training Test Training Test Training Test Training Test Training Test

Che 96:9170:60 96:5672:45 94:3270:58 94:3471:45 88:5770:59 88:3772:85 93:2270:61 91:2272:85 84:5670:35 84:7072:65

Mov 90:5271:69 86:6677:34 70:0071:67 65:8377:35 79:3471:68 72:3477:38 80:2171:67 70:2177:37 81:4871:42 81:9477:35

Sat 91:5170:49 91:2970:97 87:3470:48 86:1170:97 85:8370:49 83:8370:97 89:7070:48 85:8570:97 90:8570:41 90:5870:99

Spa 93:6870:46 93:6972:19 91:3770:47 90:7172:20 91:9270:46 91:1272:20 92:7570:46 91:5672:20 89:9970:43 89:4572:23

Spl 87:7070:54 86:8371:30 88:3770:56 86:0671:32 79:1570:56 78:6571:32 86:5470:59 83:5471:34 75:2470:50 74:9571:33

Tex 98:9970:57 98:3671:46 93:5770:57 93:2471:47 92:9870:59 92:2171:46 98:3270:56 95:5271:49 99:0170:52 99:0571:47

Avg. 93:2270:73 92:2372:62 87:4970:72 86:0572:46 86:3070:73 84:4272:70 90:1270:73 86:3272:70 87:9370:61 86:7872:67

J. Derrac et al. / Pattern Recognition 43 (2010) 2082–21052102

ARTICLE IN PRESS

Table 33
Reduction rates achieved (high size data sets).

Alg IFS-CoCo (IS) IS-CHC IS-SSGA IS-GGA IFS-CoCo (FS) FS-CHC FS-SSGA FS-GGA IFS-CoCo (FS) IFS-CHC IFS-IGA IFS-HGA

Che 81.64 98.19 94.95 94.23 38.89 33.33 34.12 33.89 99.64 99.69 99.72 42.12

Mov 99.33 84.88 84.58 83.22 63.33 64.44 65.76 65.98 98.89 89.20 92.33 72.81

Sat 71.65 99.36 97.99 98.14 47.22 30.56 31.23 31.45 99.12 99.55 99.58 45.90

Spa 77.16 99.20 98.12 98.22 49.12 54.39 56.53 55.98 99.02 99.44 99.49 63.31

Spl 92.96 99.02 95.42 95.65 76.67 71.67 71.98 71.89 99.12 98.61 98.82 82.42

Tex 79.56 97.01 96.18 96.95 65.00 60.00 62.50 62.50 98.15 98.55 98.14 69.45

Avg. 83.72 96.28 94.54 94.40 56.71 52.40 53.69 53.62 98.99 97.51 98.01 62.67

Table 34
IFS-CoCo vs IS algorithms (Kappa in training and test phases, high size data sets).

Alg IFS-CoCo IS-CHC IS-SSGA IS-GGA 1-NN

Training Test Training Test Training Test Training Test Training Test

Che 93:7970:74 93:0973:23 66:7370:56 67:3872:62 84:0170:68 69:7971:93 77:4570:63 73:0873:39 84:5671:09 67:6872:22

Mov 91:4071:56 79:1677:82 72:5472:24 55:4577:56 82:1471:95 61:2977:46 77:8472:26 61:2977:46 81:4871:81 76:2077:80

Sat 89:5170:80 89:2670:91 85:2570:81 84:9971:30 89:5570:31 87:3171:07 88:0570:94 88:8271:14 90:8570:42 88:3071:27

Spa 85:1671:04 86:6872:33 74:3370:81 74:9372:01 81:4270:51 72:1472:08 78:6370:54 76:5372:64 89:9970:50 78:9772:67

Spl 80:3970:93 79:1871:20 56:0971:10 50:8371:87 71:5870:94 57:9271:73 66:3570:55 63:0671:76 75:2470:45 61:3771:30

Tex 98:8971:06 98:8071:49 93:4070:65 93:2071:54 97:9671:04 95:0071:30 97:0271:16 94:6071:52 99:0171:03 98:6071:96

Avg. 89:8571:02 87:6972:83 74:7271:03 71:1372:82 84:4470:90 73:9172:60 80:8971:01 76:2372:99 79:4370:88 78:5272:87

Table 35
IFS-CoCo vs FS algorithms (Kappa in training and test phases, high size data sets).

Alg IFS-CoCo FS-CHC FS-SSGA FS-GGA 1-NN

Training Test Training Test Training Test Training Test Training Test

Che 93:7970:74 93:0973:23 97:2171:09 92:3573:29 56:1471:09 64:4973:12 56:3871:00 62:5571:92 84:5671:09 67:6872:22

Mov 91:4071:56 79:1677:82 92:0672:08 79:1177:59 86:7771:57 76:2077:20 86:1171:53 76:2077:18 81:4871:81 76:2077:80

Sat 89:5170:80 89:2670:91 89:7570:73 88:2271:15 89:7170:38 87:9370:97 89:7570:73 88:1471:53 90:8570:42 88:3071:27

Spa 85:1671:04 86:6872:33 86:5170:93 84:2272:54 83:1370:72 82:7372:35 83:3470:62 84:1372:43 89:9970:50 78:9772:67

Spl 80:3970:93 79:1871:20 78:5270:73 69:5671:21 81:5070:97 76:4071:12 79:6070:59 74:6571:87 75:2470:45 61:3771:30

Tex 98:8971:06 98:8071:49 99:3671:01 98:8371:59 99:2471:17 98:5071:90 99:3870:46 98:2071:59 99:0171:03 98:6071:96

Avg. 89:8571:02 87:6972:83 90:5771:10 85:3872:90 82:7570:98 81:0472:78 82:4370:82 80:6472:75 79:4370:88 78:5272:87

Table 36
IFS-CoCo vs IFS algorithms (Kappa in training and test phases, high size data sets).

Alg IFS-CoCo IFS-CHC IFS-IGA IFS-HGA 1-NN

Training Test Training Test Training Test Training Test Training Test

Che 93:7970:74 93:0973:23 87:9270:47 89:9572:73 80:9270:56 82:9573:17 91:9270:64 88:1573:01 84:5671:09 67:6872:22

Mov 91:4071:56 79:1677:82 67:2572:09 52:4477:56 73:4871:65 65:8477:44 87:0171:53 73:4477:17 81:4871:81 76:2077:80

Sat 89:5170:80 89:2670:91 83:8771:04 82:2071:12 81:0270:34 80:0271:31 85:9270:92 85:5271:56 90:8570:42 88:3071:27

Spa 85:1671:04 86:6872:33 82:2070:96 85:9272:72 78:1570:30 85:6772:36 82:9070:99 86:0172:36 89:9970:50 78:9772:67

Spl 80:3970:93 79:1871:20 80:2570:45 76:4971:22 67:2570:65 57:4971:21 76:2570:82 72:4971:11 75:2470:45 61:3771:30

Tex 98:8971:06 98:8071:49 93:2470:38 90:0071:29 92:8870:73 88:1471:76 97:1770:82 98:1872:02 99:0171:03 98:6071:96

Avg. 89:8571:02 87:6972:83 82:4670:90 79:5072:77 78:9570:71 76:6972:88 86:8670:95 83:9772:87 79:4370:88 78:5272:87

Table 37
Time elapsed (high size data sets).

Alg IFS-CoCo IS-CHC IS-SSGA IS-GGA FS-CHC FS-SSGA FS-GGA IFS-CHC IFS-IGA IFS-HGA

Che 13068 770 1632 1732 21932 20657 20946 528 8841 6549

Mov 173 34 91 99 242 221 226 31 94 86

Sat 87094 2930 9275 10112 133700 125678 129634 3011 45672 42135

Spa 54636 1816 5430 6002 79048 74563 74579 1948 29220 27844

Spl 22218 677 1646 1843 35081 33264 32765 848 14794 10986

Tex 68297 2542 7689 7902 76481 74533 74987 2283 36557 32895

Avg. 40914 1461 4294 4615 57747 54819 55523 1442 22530 20082

J. Derrac et al. / Pattern Recognition 43 (2010) 2082–2105 2103

ARTICLE IN PRESS

J. Derrac et al. / Pattern Recognition 43 (2010) 2082–21052104
rates achieved. Table 17 shows the running times of every
method.

In a similar way, Tables 18–21 show the results obtained by FS
methods, and Tables 22, 23, 24 and 25 show the results obtained
by IFS methods. Finally, Tables 26–29 show the full results of the
comparison between IFS-CoCo and the classical approaches of IS
and FS.

For the second study, Tables 30–32 shows the average
accuracy results obtained over the 6 high dimensional data sets.
Table 33 shows the average reduction rates achieved over these
domains. Tables 34–36 shows the average kappa results, and
finally, Table 37 shows the average running times obtained.

Note: For space reasons, accuracy and kappa results are shown
in the format xx:xx7x:xx instead of 0:xxxx70:xxxx.
References

[1] I.H. Witten, E. Frank, Data Mining: Practical Machine Learning Tools and
Techniques, second ed., Morgan Kaufmann, Los Altos, CA, 2005.

[2] X. Wu, V. Kumar (Eds.), The Top Ten Algorithms in Data Mining, Chapman &
Hall, CRC, London, Boca Raton, 2009.

[3] D. Pyle, Data Preparation for Data Mining, Morgan Kaufmann, San Francisco, 1999.
[4] S. Wang-Manoranjan, D.C. Xu, Efficient data reduction in multimedia data,

Applied Intelligence 25 (2006) 359–374.
[5] A. Kolesnikov, P. Frantib, Data reduction of large vector graphics, Pattern

Recognition 38 (2005) 381–394.
[6] S.W. Kim, B.J. Oomenn, On using prototype reduction schemes to optimize

dissimilarity-based classification, Pattern Recognition 40 (11) (2007) 2946–2957.
[7] J.R. Cano, S. Garcı́a, F. Herrera, Subgroup discovery in large size data sets

preprocessed using stratified instance selection for increasing the presence of
minority classes, Pattern Recognition Letters 29 (2008) 2156–2164.

[8] S.W. Kim, B.J. Oomenn, On using prototype reduction schemes to enhance the
computation of volume-based inter-class overlap measures, Pattern Recogni-
tion 42(11) (2009) 2695–2704.

[9] T.M. Cover, P.E. Hart, Nearest neighbor pattern classification, IEEE Transac-
tions on Information Theory 13 (1967) 21–27.

[10] P. Perner, Prototype-based classification, Applied Intelligence 28 (2008) 238–246.
[11] H. Liu, H. Motoda (Eds.), Instance Selection and Construction for Data Mining,

Springer, New York, 2001.
[12] H. Liu, H. Motoda (Eds.), Computational Methods of Feature Selection,

Chapman & Hall, CRC, London, Boca Raton, 2007.
[13] J.R. Cano, F. Herrera, M. Lozano, Using evolutionary algorithms as instance

selection for data reduction in KDD: An experimental study, IEEE Transac-
tions on Evolutionary Computation 7 (2003) 561–575.

[14] A.E. Eiben, J.E. Smith, Introduction to Evolutionary Computing, Springer,
Berlin, 2003.

[15] S. Garcı́a, J.R. Cano, F. Herrera, A memetic algorithm for evolutionary
prototype selection: a scaling up approach, Pattern Recognition 41 (8)
(2008) 2693–2709.

[16] L.I. Kuncheva, Editing for the k-nearest neighbors rule by a genetic algorithm,
Pattern Recognition Letters 16 (1995) 809–814.

[17] I. Inza, P. Larraaga, B. Sierra, Feature subset selection by Bayesian networks: a
comparison with genetic and sequential algorithms, International Journal of
Approximate Reasoning 27 (2001) 143–164.

[18] I. Oh, J. Lee, B. Moon, Hybrid Genetic Algorithms for Feature Selection, IEEE
Transactions on Pattern Analysis and Machine Intelligence 26 (2004)
1424–1437.

[19] D. Whitley, C. Guerra-Salcedo, Genetic search for feature subset selection: a
comparison between CHC and GENESIS, in: Proceedings of the Third Annual
Conference on Genetic Programming, Wisconsin, 1998, pp. 504–509.

[20] A.A. Freitas, Data Mining and Knowledge Discovery with Evolutionary
Algorithms, Springer, New York, 2002.

[21] A. Ghosh, L.C. Jain, Evolutionary Computation in Data Mining, Springer,
Berlin, 2005.

[22] S. Bandyopadhyay, S. Santanu, A genetic approach for efficient outlier
detection in projected space, Pattern Recognition 41 (2008) 1338–1349.

[23] M.A. Potter, K.A. De Jong, Cooperative coevolution: an architecture for
evolving coadapted subcomponents, Evolutionary Computation 8 (2000)
1–29.

[24] D.H. Wolpert, W.G. Macready, Coevolutionary free lunches, IEEE Transactions
on Evolutionary Computation 9 (2005) 721–735.

[25] N. Garcia-Pedrajas, D. Ortiz-Boyer, A cooperative constructive method for neural
networks for pattern recognition, Pattern Recognition 40 (1) (2007) 80–98.

[26] R.P. Wiegand, T. Jansen, The cooperative coevolutionary ð1þ1Þ EA, Evolu-
tionary Computation 12 (2004) 405–434.

[27] F. Wilcoxon, Individual comparisons by rankings methods, Biometrics 1
(1945) 80–83.

[28] H. Liu, H. Motoda, On issues of instance selection, Data Mining and
Knowledge Discovery 6 (2) (2002) 115–130.
[29] J.R. Cano, F. Herrera, M. Lozano, Evolutionary stratified training set selection
for extracting classification rules with trade-off precision-interpretability,
Data and Knowledge Engineering 60 (2007) 90–100.

[30] K. Kim, Artificial neural networks with evolutionary instance selection for
financial forecasting, Expert Systems with Applications 30 (2006) 519–526.

[31] D.R. Wilson, T.R. Martinez, Reduction techniques for instance-based learning
algorithms, Machine Learning 38 (2000) 257–286.

[32] P.E. Hart, The condensed nearest neighbor rule, IEEE Transactions on
Information Theory 18 (1968) 515–516.

[33] D.L. Wilson, Asymptotic properties of nearest neighbor rules using edited
data, IEEE Transactions on Systems, Man and Cybernetics 3 (1972) 408–421.

[34] E. Marchiori, Hit miss networks with applications to instance selection,
Journal of Machine Learning Research 9 (2008) 997–1017.

[35] J.A. Olvera-López, J.A. Carrasco-Ochoa, J.F. Martı́nez-Trinidad, A new fast
prototype selection method based on clustering, Pattern Analysis and
Applications (2009), in press, doi:10.1007/s10044-008-0142-x.

[36] J.C. Bezdek, L.I. Kuncheva, Nearest prototype classifier designs: an experimental
study, International Journal of Intelligent Systems 16 (2001) 1445–1473.

[37] N. Jankowski, M. Grochowski, Comparison of instances selection algorithms I.
Algorithms survey, in: Lecture Notes in Computer Science, vol. 3070,
Springer, Berlin, 2004, pp. 598–603.

[38] S.W. Kim, B.J. Oomenn, A brief taxonomy and ranking of creative prototype
reduction schemes, Pattern Analysis and Applications 6 (2003) 232–244.

[39] R. Kohavi, G. John, Wrappers for feature selection, Artificial Intelligence 97
(1997) 273–324.

[40] I. Guyon, A. Elisseeff, An introduction to variable and feature selection,
Journal of Machine Learning Research 3 (2003) 1157–1182.

[41] Y. Saeys, I. Inza, P. Larranaga, A review of feature selection techniques in
bioinformatics, Bioinformatics 19 (2007) 2507–2517.

[42] H. Liu, H. Motoda, Feature Selection for Knowledge Discovery and Data
Mining, Springer, New York, 1998.

[43] Y. Li, B.L. Lu, Feature selection based on loss-margin of nearest neighbor
classification, Pattern Recognition 42 (9) (2009) 1914–1921.

[44] D.J. Stracuzzi, P.E. Utgoff, Randomized variable elimination, Journal of
Machine Learning Research 5 (2004) 1331–1362.

[45] J. Shie, S. Chen, Feature subset selection based on fuzzy entropy measures
for handling classification problems, Applied Intelligence 28 (2008)
69–82.

[46] H. Liu, L. Yu, Toward integrating feature selection algorithms for classification
and clustering, IEEE Transactions on Knowledge and Data Engineering 17 (3)
(2005) 1–12.

[47] L.I. Kuncheva, L.C. Jain, Nearest neighbor classifier: simultaneous editing
and descriptor selection, Pattern Recognition Letters 20 (1999)
1149–1156.

[48] H. Ishibuchi, T. Nakashima, M. Nii, Genetic-algorithm-based instance and
feature selection, in: H. Liu, H. Motoda (Eds.), Instance Selection and
Construction for Data Mining, 2001, pp. 95–112.

[49] J. Teixeira, R.A. Ferreira, G.A. Lima, A novel approach for integrating feature
and instance selection, in: International Conference on Machine Learning and
Cybernetics, Kunming, 2008, pp. 374–379.

[50] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by simulated annealing,
Science 4598 (1983) 671–680.

[51] H. Ahn, K. Kim, Bankruptcy prediction modeling with hybrid case-based
reasoning and genetic algorithms approach, Applied Soft Computing 9 (2009)
599–607.

[52] L.J. Eshelman, The CHC adaptative search algorithm: how to have safe search
when engaging in nontraditional genetic recombination, in: G.J.E. Rawlins
(Ed.), Foundations of Genetic Algorithms, , 1991, pp. 265–283.

[53] R. Gil-Pita, X. Yao, Evolving edited k-nearest neighbor classifiers, Interna-
tional Journal of Neural Systems 18 (6) (2008) 1–9.

[54] H. Ishibuchi, T. Nakashima, Evolution of reference sets in nearest neighbor
classification, Lecture Notes in Computer Science vol. 1585 (1999) 82–89.

[55] B. Sierra, E. Lazkano, I. Inza, M. Merino, P. Larraaga, J. Quiroga, Prototype
selection and feature subset selection by estimation of distribution
algorithms. A case study in the survival of cirrhotic patients treated with
TIPS, in: Lecture Notes in Artificial Intelligence, vol. 2101, Springer, Berlin,
2001, pp. 20–29.

[56] J. Bala, K.A. De Jong, J. Huang, H. Vafaie, H. Wechsler, Using learning to
facilitate the evolution of features for recognizing visual concepts, Evolu-
tionary Computation 4 (3) (1997) 297–311.

[57] J. Casillas, O. Cordon, M.J. Del Jesus, F. Herrera, Genetic feature selection in a
fuzzy rule-based classification system learning process for high-dimensional
problems, Information Sciences 136 (2001) 135–157.

[58] A. Gonzalez, R. Perez, Selection of relevant features in a fuzzy genetic learning
algorithm, IEEE Transactions on Systems, Man and Cybernetics 31 (3) (2001)
417–425.

[59] L. Rokach, Genetic algorithm-based feature set partitioning for classification
problems, Pattern Recognition 41 (2008) 1676–1700.

[60] W. Siedlecki, J. Sklansky, A note on genetic algorithm for large-scale feature
selection, Pattern Recognition Letters 10 (1989) 335–347.

[61] C. Wang, Y. Huang, Evolutionary-based feature selection approaches with
new criteria for data mining: a case study of credit approval data, Expert
Systems with Applications 36 (2009) 5900–5908.

[62] P. Zhang, B. Verma, K. Kumar, Neural vs. statistical classifier in conjunction
with genetic algorithm based feature selection, Pattern Recognition Letters
26 (7) (2005) 909–919.

ARTICLE IN PRESS

J. Derrac et al. / Pattern Recognition 43 (2010) 2082–2105 2105
[63] S. Ho, C. Liu, S. Liu, Design of an optimal nearest neighbor classifier using an
intelligent genetic algorithm, Pattern Recognition Letters 23 (2002) 1495–1503.

[64] F. Ros, S. Guillaume, M. Pintore, J.R. Chretien, Hybrid genetic algorithm for
dual selection, Pattern Analysis and Applications 11 (2008) 179–198.

[65] P.W. Price, Biological Evolution, Saunders College Publishing, 1998.
[66] R.P. Wiegand, An analysis of cooperative coevolutionary algorithms, Ph.D.

Thesis, George Mason University, Fairfax, Virginia, 2003.
[67] C.D. Rosin, R.K. Belew, New Methods for competitive coevolution, Evolu-

tionary Computation 15 (1997) 1–29.
[68] L. Panait, R.P. Wiegand, S. Luke, Improving coevolutionary search for optimal

multiagent behaviors, in: International Joint Conferences on Artificial
Intelligence, Acapulco, 2003, pp. 653–658.

[69] L. Panait, S. Luke, J.F Harrison, Archive-based cooperative coevolutionary
algorithms, in: Genetic and Evolutionary Computation Conference, GECCO’06,
Seattle, 2006, pp. 345–352.

[70] R.P. Wiegand, J. Sarma, Spatial embedding and loss of gradient in cooperative
coevolutionary algorithms, Parallel Problem Solving from Nature VIII,
Birmingham, 2004, pp. 912–921.

[71] E. Popovici, K.A. De Jong, Sequential versus parallel cooperative coevolu-
tionary algorithms for optimization, IEEE Congress on Evolutionary Compu-
tation, Vancouver, 2006, pp. 1610–1617.

[72] R.P. Wiegand, L. Liles, K.A. De Jong, An empirical analysis of collaboration
methods in cooperative coevolutionary algorithms, in: Genetic and Evolu-
tionary Computation Conference, GECCO’01, San Francisco, 2001, pp.
1235–1242.

[73] J. Hofbauer, K. Sigmund, Evolutionary games and population dynamics,
Cambridge University Press, Cambridge, 1998.

[74] D.H. Wolpert, W.G. Macready, No free lunch theorems for optimization, IEEE
Transactions on Evolutionary Computation 1 (1) (1997) 67–82.

[75] C.S. Travis, D.R. Tauritz, A no-free-lunch framework for coevolution, in:
Genetic and Evolutionary Computation Conference, GECCO’08, Atlanta, 2008,
pp. 371–378.

[76] A. Asuncion, D.J. Newman, UCI repository of machine learning databases,
2007, URL: / http://www.ics.uci.edu/�mlearn/MLRepository.htmlS.

[77] E. Alpaydin, Introduction to Machine Learning, MIT Press, Cambridge, MA, 2004.
[78] T.S. Lim, W.Y. Loh, Y.S. Shih, A comparison of prediction accuracy, complexity,

and training time of thirty-three old and new classification algorithms,
Machine Learning 40 (3) (2000) 203–228.
[79] J. Cohen, A coefficient of agreement for nominal scales, Educational and
Psychological Measurement 20 (1) (1960) 37–46.

[80] A. Ben-David, A lot of randomness is hiding in accuracy, Engineering
Applications of Artificial Intelligence 20 (7) (2007) 875–885.

[81] J. Demšar, Statistical comparisons of classifiers over multiple data sets,
Journal of Machine Learning Research 7 (2006) 1–30.

[82] S. Garcı́a, F. Herrera, An extension on ‘‘Statistical comparisons of classifiers
over multiple data sets’’ for all pairwise comparisons, Journal of Machine
Learning Research 9 (2008) 2677–2694.

[83] D.J. Sheskin, Handbook of Parametric and Nonparametric Statistical Proce-
dures, CRC Press, Boca Raton, 1997.

[84] J.H. Zar, Biostatistical Analysis, Prentice-Hall, Englewood Cliffs, London, 1999.
[85] H. Brighton, C. Mellish, Advances in instance selection for instance-based

learning algorithms, Data Mining and Knowledge Discovery 6 (2) (2002)
153–172.

[86] K. Kira, L. Rendell, A practical approach to feature selection, in: P. Sleeman, P.
Edwards (Eds.), Proceedings of the Ninth International Conference on
Machine Learning (ICML-92), Morgan Kaufmann, Los Altos, CA, 1992, pp.
249–256.

[87] H. Liu, R. Setiono, Feature selection and classification: a probabilistic wrapper
approach, in: Ninth International Conference on Industrial and Engineering
Applications of Artificial Intelligence and Expert Systems, Fukuoka, Japan,
1996, pp. 419–424.

[88] T.K. Ho, M. Basu, Complexity measures of supervised classification problems,
IEEE Transactions on Pattern Analysis and Machine Intelligence 24 (3) (2002)
289–300.

[89] S. Singh, Multiresolution estimates of classification complexity, IEEE
Transactions on Pattern Analysis and Machine Intelligence 25 (12) (2003)
1534–1539.

[90] J.R. Cano, F. Herrera, M. Lozano, Stratification for scaling up evolutionary
prototype selection, Pattern Recognition Letters 26 (2005) 953–963.

[91] A. Haro-Garcı́a, N. Garcı́a-Pedrajas, A divide-and-conquer recursive approach
for scaling up instance selection algorithms, Data Mining and Knowledge
Discovery 18 (2009) 392–418.

[92] R. Paredes, E. Vidal, Learning weighted metrics to minimize nearest-neighbor
classification error, IEEE Transactions on Pattern Analysis and Machine
Intelligence 28 (7) (2006) 1100–1110.
About the Author—JOAQUÍN DERRAC received the M.Sc. degree in computer science from the University of Granada, Granada, Spain, in 2008. He is currently a Ph.D.
student in the Department of Computer Science and Artificial Intelligence, University of Granada, Granada, Spain.

His research interests include data mining, lazy learning and evolutionary algorithms.
About the Author—SALVADOR GARCÍA received the M.Sc. and Ph.D. degrees in computer science from the University of Granada, Granada, Spain, in 2004 and 2008,
respectively. He is currently an Associate Professor in the Department of Computer Science, University of Jaén, Jaén, Spain.

His research interests include data mining, data reduction, data complexity, imbalanced learning, statistical inference and evolutionary algorithms.
About the Author—FRANCISCO HERRERA received the M.Sc. degree in Mathematics in 1988 and the Ph.D. degree in Mathematics in 1991, both from the University of
Granada, Spain.

He is currently a Professor in the Department of Computer Science and Artificial Intelligence at the University of Granada. He has published more than 150 papers in
international journals. He is coauthor of the book ‘‘Genetic Fuzzy Systems: Evolutionary Tuning and Learning of Fuzzy Knowledge Bases’’ (World Scientific, 2001). As edited
activities, he has co-edited five international books and co-edited twenty special issues in international journals on different Soft Computing topics. He acts as associated
editor of the journals: IEEE Transactions on Fuzzy Systems, Information Sciences, Mathware and Soft Computing, Advances in Fuzzy Systems, Advances in Computational
Sciences and Technology, and International Journal of Applied Metaheuristic Computing. He currently serves as area editor of the Journal Soft Computing (area of genetic
algorithms and genetic fuzzy systems), and he serves as member of several journal editorial boards, among others: Fuzzy Sets and Systems, Applied Intelligence,
Knowledge and Information Systems, Information Fusion, Evolutionary Intelligence, International Journal of Hybrid Intelligent Systems, Memetic Computation.

His current research interests include computing with words and decision making, data mining, data preparation, instance selection, fuzzy rule based systems, genetic
fuzzy systems, knowledge extraction based on evolutionary algorithms, memetic algorithms and genetic algorithms.

http://www.ics.uci.edu/∼mlearn/MLRepository.html
http://www.ics.uci.edu/∼mlearn/MLRepository.html

	IFS-CoCo: Instance and feature selection based on cooperative coevolution with nearest neighbor rule
	Introduction
	Background: data reduction and coevolutionary algorithms
	Data reduction techniques
	Instance selection
	Feature selection
	Instance and feature selection

	Evolutionary algorithms on data reduction
	Coevolutionary algorithms

	A cooperative coevolutionary algorithm for instance and feature selection: IFS-CoCo
	Populations and chromosome representation
	Fitness function
	CHC algorithm
	Coevolutionary process

	Experimental framework
	Classification problems
	Algorithms for evaluation
	Parameters
	Performance measures
	Test for analysis

	Results and analysis
	Results obtained
	Comparison with classical approaches
	Selection of suitable parameters for IFS-CoCo
	Analysis of the subsets selected by IFS-CoCo
	Analysis of convergence
	Analysis of the behavior of IFS-CoCo with high dimensional data sets
	Future trends of work

	Concluding remarks
	Acknowledgments
	Description of the algorithms employed on the experimental study
	GGA model for IS/FS
	SSGA model for IS/FS
	IGA model for IFS
	HGA model for IFS

	Full results of the experimental study
	References

