
XIX Congreso Español sobre Tecnoloǵıas y Lógica Fuzzy

187

Complexity of Increasing φ-Recursive Computable

Aggregations

Ramón González-del-Campo

Faculty of Informatics, Complutense University of Madrid

Email: rgonzale@ucm.es

Luis Garmendia

Faculty of Informatics, Complutense University of Madrid

Email: lgarmend@fdi.ucm.es

Javier Montero

Faculty of Mathematics, Complutense University of Madrid

Email: monty@mat.ucm.es

Abstract—In this paper the new concepts of O(f(n))-increa-
sing φ-recursive and O(f(n))-decreasing ψ-recursive computable
aggregation and expansion function are proposed to describe
the computational cost of recursive computational aggregations
when the universe of the discourse is increased or decreased are
related. The complexity costs of the expansion functions with the
complexity costs of its recursive computational aggregations.

I. INTRODUCTION

As stressed in [11], much effort is needed in analyzing the

properties of the algorithms we apply to solve aggregation

problems in practice. In fact, in [11] , the authors pointed out

that it is the avaliable algorithm what defines each aggregation,

making feasible a specific solution to each possible problem,

of course depending on decision maker’s tools and capac-

ities. Such computable aggregations come with a protocol

that enables us to face aggregation problems in a specific

general framwork. For example, when the cardinal of data

is not being fixed, or cannot be a priori fixed. In particular,

recursive aggregations [4], [5], [6], [7], [9] are a special kind

of computable aggregations that play a strong role when the

universe is modified. The computational cost is critical when

it is necessary to process a huge amount of data.

When recursive aggregations are used it is necessary to

know the cost to recompute the new value of the aggrega-

tion if the universe is changed adding or removing data. In

this paper, two new concepts are proposed to describe the

computational cost of recursive computational aggregations

when the universe of the discourse is modified by adding

or removing an element. On the one hand, the O(f(n))-
increasing φ-recursive computable aggregations is a set of

recursive computable aggregations that have a computational

cost bounded by f(n) when an element is added to the

universe. The expansion function of a computable recursive

aggregation allows to know its computational cost. On the

other hand, the O(f(n))-decreasing ψ-recursive computable

aggregations are defined in similar way when an element is

removed from the universe.

II. PRELIMINARIES

The concept of computational complexity cost of an algo-

rithm is an important consideration in computer sciences as

a degree to measure the quality and usability of programs. It

can be measured in terms of time or memory usage, but it is

usually measured in terms of number of operations, and how

this number grows as the size of data grows comparing with

a function or order in which adding constants, multipliers or

lower order functions do no affect the main kind of growing

of the higher order.

Definition 1. [3] Let f : N → R be a function. The set of

functions in the order of f , O(f), are defined as follows:

O(f) ≡ {g : N → R | ∃c ∈ R, n0 ∈ N ∀n ≥ n0
g(n) ≤ cf(n)}

The order of f contains all the functions that grows up slower

than f .

Definition 2. [3] Let f : N → R be a function. The

computational complexity of f , Θ(f), is defined as follows:

Θ(f) ≡ {g : N → R | ∃c, d ∈ R, n0 ∈ N ∀n ≥ n0

df(n) ≤ g(n) ≤ cf(n)}

Definition 3. [3] Let f, g : N → R be two functions. It is said

f has a complexity lower than g if O(f) ⊂ O(g)

Proposition 1. [3] Let q, a be two real numbers such that

q > 1 and a > 1. Then:

O(1) ⊂ O(log(n)) ⊂ O(n) ⊂ O(nq) ⊂ O(an) ⊂ O(n!)

In the following definition the most usual types of complex-

ity are introduced.

Definition 4. [3] Let g : N → R
+ be a function. Then:

• g has constant complexity if g belongs to Θ(1), i.e, if g
grows up as fast as f(n) = 1.

• g has logarithmic complexity if g belongs to Θ(log(n)),
i.e, if g grows up as fast as f(n) = log(n).

• g has linear complexity if g belongs to Θ(n), i.e, if g
grows up as fast as f(n) = n.

• g has polynomial complexity if g belongs to Θ(nq) for

some q > 1, i.e, if g grows up as fast as f(n) = nq .

• g has exponential complexity if g belongs to Θ(an) for

some a > 1, i.e, if g grows up as fast as f(n) = an.

XVIII Conferencia de la Asociación Española para la Inteligencia Artificial

188

• g has factorial complexity if g belongs to Θ(n!), i.e, if g
grows up as fast as f(n) = n!.

Definition 5. [3] The computational complexity cost of an

algorithm is the order of the function that gives the computing

time of the algorithm.

It is possible a definition of computational complexity

cost focusing on the number of operations to complete the

algorithm:

Definition 6. [3] The computational complexity cost of an

algorithm is the order of the function that gives a bound for

the number of operations of the algorithm.

Definition 7. [1] A L list is an Abstract Data Type (ADT)

that represents a sequence of values. A list can be defined by

its behavior and its implementation must provide at least the

following operations:

• Test whether a list is empty or not.

• Add a value.

• Remove a value.

• Compute the length (number of values) of a list.

A list can be defined under a template data. For example, a

list L < [0, 1] > is a list of values in [0, 1].

Talking about complexity of algorithms implies to show the

code of them. There are a lot of programming languages (C++,

Python, Java,...). Python is a easy to understand programming

language. Even if you do not know Python, you can understand

a program written in Python. That is the reason why the

programs are written in Python in this paper. All programs here

showed can be rewritten in any other programming language.

Definition 8. [5] A left-recursive connective rule is a family

of connective operators:

(Ag : [0, 1]n → [0, 1])n>1

such that there exists a sequence of binary operators:

(Ln : [0, 1]2 → [0, 1])n>1

verifying:

• Ag(a1, a2) = L2(a1, a2)
• Ag(a1 . . . , an) = Ln(Ag(a1, . . . , an−1), an) for all n >

2

for some ordering rule π.

In similar way a right-recursive connective rule can be

defined.

A right-recursive connective and left-recursive connective

rule is called recursive connective rule.

Definition 9. [2] An aggregation operator is a mapping Ag :
[0, 1]n → [0, 1] that satisfies:

1) Ag(0, 0..., 0) = 0 and Ag(1, 1, .., 1) = 1.

2) Ag is monotonic.

There exists some other proposals to fusion information

as the pre-aggreation functions that introduce the concept

of directional monotonicity and have been useful in some

applications.

Definition 10. [10] A mapping F : [0, 1]n → [0, 1] is a n-

dimensional pre-aggregation function if it satisfies:

• There exists a real vector r ∈ [0, 1]n with r 6= 0 such

that is r-growing.

• F (0, . . . , 0 = 0) and F (1, . . . , 1 = 1).

Next definition shows a wider point of view about aggre-

gation. It is possible to extend the domain of aggregations to

lists of elements L with generic types T . For example, T can

be an image and the aggregation that process it can make the

fussion of images.

In this paper of article, we will focus on the aggregations

that can be computed using a program and the cost of

computation of these aggregations.

Definition 11. [11] Let L < T > be a list of n elements of

type T . A computable aggregation Agc is a program P that

transforms the list L < T > into an element of T .

Definition 12. [8] Let L = {x1, . . . , xn} be a list of values.

A computable aggregation rule Agc is recursive if there exists

a mapping φ : [0, 1]2 → [0, 1] such that:

Agc(L) =

{

x1, if lenght(L) = 1;

φ(Agc(x1, ..., xn−1), xn), if lenght(L) > 1.

Definition 13. [8] A computation aggregation rule is expan-

sible if there exists a mapping φ : [0, 1]2 → [0, 1] satisfying

the following property:

Agc(L1 ∪ L2) = φ(Agc(L1), Agc(L2))

where φ is an algorithm with linear or lower computational

complexity cost.

Note. Let Comp, Rec and Exp be the computable aggre-

gations, the recursive aggregations and the expansible aggre-

gations respectively. Then:

Exp ⊂ Rec ⊂ Comp

Talking about complexity of algorithms implies to show the

code of algorithms that implement them. There are a lot of

programming languages (C++, Python, Java,...). Python is a

easy to understand programming language. Even if you do not

know Python, you can understand a program written in Python.

That is the reason why the programs are written in Python in

this paper. All programs here showed can be rewritten in any

other programming language.

III. INCREASING φ-RECURSIVE COMPUTABLE

AGGREGATIONS RULES

Let L = {x1, . . . , xn} be a list of values and n its length.

Definition 14. A computable aggregation rule Agc is

O(f(n))-increasing φ-recursive if there exists a mapping

φ : [0, 1]2 × L→ [0, 1] such that:

• Agc(L) =

{

x1, if n = 1;

φ(Agc(x1, ..., xn−1)), xn, {x1, . . . , xn−1}), if n > 1.

• φ has a O(f(n)) complexity cost.

XIX Congreso Español sobre Tecnoloǵıas y Lógica Fuzzy

189

Definition 15. A O(f(n))-increasing φ-recursive computable

aggregation rule Agc is non depending of length L if there

exists a mapping φ : [0, 1]2 → [0, 1] such that:

• Agc(L) =

{

x1, if n = 1;

φ(Agc(x1, ..., xn−1)), xn), if n > 1.
• φ has a O(f(n)) complexity cost.

Next lemmas relate types of increasing φ-recursive com-

putable aggregations with recursive computable aggregations

and explansible computable aggregations given in Definition

12 and Definition 13.

The next two lemmas are trivial:

Lemma 1. A recursive computable aggregation is O(f(n))-
increasing φ-recursive for some f(n).

Lemma 2. If Agc is an explansible computable aggregation,

then Agc is a O(n)-increasing φ-recursive computable aggre-

gation.

The following lemmas show some O(n)-increasing φ-

recursive computable aggregations.

Lemma 3. Arithmetic mean is a O(1)-increasing φ-recursive

computable aggregation.

Proof. Agc(x1, . . . , xn+1) =

= 1
n+1

∑n+1
i=1 xi = 1

n+1 (
∑n

i=1 xi + xn+1) =
n

n+1

∑n

i=1 xi +
n

n+1xn+1 = n
n+1Agc(x1, . . . , xn)+

n
n+1xn+1

So φ(x, y, n) = n
n+1x+ 1

n+1y.

The next two programs compute φ(x, y, {x1, . . . , xn})
when n (length of {x1, . . . , xn}) is known and when n is

not known:

• n is known:

def p h i (x , y , n) :

re turn (n∗x+y) / (n +1)

So φ is O(1) complexity.

• n is unknown:

def p h i (x , y , l) :

n= l e n (l)

re turn (n∗x+y) / (n +1)

Then, it is O(n) complexity to compute length(l).

Lemma 4. The Product computable aggregation is a O(1)-
increasing φ-recursive computable aggregation.

Proof. Agc(x1, . . . , xn+1) =

=
∏n+1

i=1 xi = xn+1 ∗
∏n

i=1 xi

So φ(x, y) = x∗y, which have a O(1) constant complexity

cost.

The next program computes φ(x, y):

def p h i (x , y) :

re turn x∗y

So φ is O(1) complexity.

Lemma 5. Bounded sum (min{1,
∑n

i=1 xi}) is a O(1)-
increasing φ-recursive computable aggregations.

Proof. There exist three cases:

1) If Agc(x1, . . . , xn) = 1, then Agc(x1, . . . , xn+1) = 1
2) If Agc(x1, . . . , xn) < 1 and Agc(x1, . . . , xn) + xn+1 ≥

1, then Agc(x1, . . . , xn+1) = 1
3) If Agc(x1, . . . , xn) + xn+1 < 1, then

Agc(x1, . . . , xn+1) = Agc(x1, . . . , xn) + xn+1

The next program computes φ(x, y):

def p h i (x , y) :

i f x ==1:

r e s =1

e l s e :

i f x+y>=1:

r e s =1

e l s e :

r e s x+y

re turn r e s

with O(1) constant complexity cost.

Lemma 6. Geometric mean is a O(1)-increasing φ-recursive

computable aggregations if n is known.

Proof. Agc(x1, . . . , xn+1) =

= (
∏n+1

i=1 xi)
1

n+1 = (xn
∏n

i=1 xi)
1

n+1 =

(xn)
1

n+1 (
∏n

i=1 xi)
1

n+1 = (xn)
1

n+1 ((
∏n

i=1 xi)
1
n)

n

n+1

= (xn)
1

n+1Agc(x1, . . . , xn))
n

n+1

So φ(x, y) = x
n

n+1 ∗ y
1

n+1 .

The two next programs compute φ(x, y, {x1, . . . , xn}) de-

pending if n (length of {x1, . . . , xn}) is known or not:

• n is known:

def p h i (x , y , n) :

re turn r e s x∗∗(n / (n +1))∗ y∗∗(n / (n + 1))

So φ is O(1) complexity.

• n is unknown:

def p h i (x , y , l) :

n= l e n (l)

re turn r e s x∗∗(n / (n +1))∗ y∗∗(n / (n + 1))

So φ is O(n) complexity cost.

Lemma 7. The forward and backward aggregations (Agfcn
and Agbcn) over the binary operator A are O(c(x, y))-
increasing φ-recursive computable aggregations.

Proof. Let A(x, y) be a binary operator and let c(x, y) be its

complexity.

Agfn+1({x1, . . . , xn+1}) = A(Agfcn({x1, . . . , xn}, xn+1).
Then φ(x, y) = A(x, y) and φ(x, y) is computed with

O(c(x, y)). So Agfcn is a O(c(x, y))-increasing φ-recursive

computable aggregation.

In similar way it is possible to prove Agbcn is a O(c(x, y))-
increasing φ-recursive computable aggregation.

Corollary 1. Minimum, Maximum, Product, Forward and

Backward aggregations are non depending of length increas-

ing φ-recursive computable aggregations.

XVIII Conferencia de la Asociación Española para la Inteligencia Artificial

190

Aggregation φ Complexity of φ

Arithmetic mean n
n+1

x+ 1

n+1
y O(1),O(n)

Minimum min{x, y} O(1)
Maximum max{x, y} O(1)

Product x ∗ y O(1)
Bounded sum See program O(1)

Geometric mean x
n

n+1 ∗ y
1

n+1 O(1),O(n)

Agfcn({x1, . . . , xn}) A(x, y) O(c(x, y))

Agbcn({x1, . . . , xn}) A(x, y) O(c(x, y))
TABLE I

EXPANSION FUNCTIONS COMPLEXITY COST OF SOME INCREASING

φ-RECURSIVE COMPUTABLE AGGREGATIONS.

Proof. Trivial.

Lemma 8. Let Ag
O(f(n))
c and Ag

O(g(n))
c be the sets of

O(f(n))-increasing φ-recursive and O(g(n))-increasing φ-

recursive computable aggregations respectively. If f(n) be-

longs to O(g(n)), then

AgO(f(n))
c ⊆ AgO(g(n))

c

Proof. Trivial.

Theorem 1. Let φ be the expansion function of Agc. If the

complexity of φ is Θ(f(n)) then Agc is approachable with

complexity Θ(n ∗ f(n)).

Proof. Let f(n) be the function that represents the computing

time of φ. The next algorithm computes Agc(x1, . . . , xn)
using φ:

def p h i (y , x) :

. . .

def Ag c (p s i , l) :

f o r x in l :

aux= p h i (aux , x)

re turn aux

The number of times that the code of the loop for is

executed depends on the length of list l, n. So Agc takes

a computing time n ∗ f(n).

Corollary 2. If φ has a polynomial complexity cost, then Agc
has a polynomial complexity cost.

Proof. If φ has a polynomial complexity its computing time

is f(n) = k ∗ na for some a. Then, due to Theorem 1 the

computing time for Agc using φ is k′ ∗ n ∗ k ∗ na = k′′na+1.

So the computing time of Agc belongs to Θ(na+1) which is

also polynomial complexity cost.

IV. DECREASING ψ-RECURSIVE COMPUTABLE

AGGREGATIONS RULES

Let Ω be a region in R
2 such that Ω ⊆ R

2.

Definition 16. Let L = {x1, . . . , xn} be a list of values. A

computable aggregation rule Agc is O(f(n))-decreasing ψ-

recursive in Ω if there exists a mapping ψ : [0, 1]2 → [0, 1]
such that:

• For all (x, y) in Ω: Agc(L \ {xn}) =
ψ(Agc(x1, ..., xn)), xn) if lenght(L) > 1

• ψ has a O(f(n)) complexity cost.

Lemma 9. Arithmetic mean is a O(1)-decreasing ψ-recursive

computable aggregation.

Proof. Agc(x1, . . . , xn) =

= 1
n

∑n

i=1 xi = = 1
n
(
∑n−1

i=1 xi + xn) =
1
n

∑n−1
i=1 xi +

1
n
∗ xn = n−1

n
Agc(x1, . . . , xn−1) +

1
n
∗ xn

So Agc(x1, . . . , xn−1) =
n

n−1 (Agc(x1, . . . , xn) −
1

n−1xn)

and ψ(x, y, n) = n
n−1x+ 1

n−1y in Ω = R
2.

The next program compute ψ(x, y, {x1, . . . , xn}) depend-

ing if n (length of {x1, . . . , xn}) is known or not:

• n is known:

def p h i (x , y , n) :

re turn n / (n−1)∗x−1/(n−1)y

So ψ is O(1) complexity.

• n is unknown:

def p h i (x , y , l) :

n= l e n (l)

re turn n / (n−1)∗x−1/(n−1)y

So ψ has O(n) complexity for the computation of

length(L).

Lemma 10. Minimum and Maximum are O(1)-decreasing ψ-

recursive computable aggregations.

Proof. If min{x1, . . . , xn} < xn, then min{x1, . . . , xn−1} =
min{x1, . . . , xn} and Agc(x1, . . . , xn−1) = Agc(x1, . . . , xn).
So Ω : {(x, y) : x < y}

The next program computes ψ(x, y):

def p s i (x , y) :

re turn x

The complexity of ψ(x, y, l) is O(1) in Ω.

Similar considerations can be done for Maximun.

Lemma 11. Product is a O(1)-decreasing ψ-recursive com-

putable aggregation.

Proof. Agc(x1, . . . , xn) =

=
∏n

i=1 xi = xn ∗
∏n−1

i=1 xi
So Agc(x1, . . . , xn) = xn ∗Agc(x1, . . . , xn−1) and ψ(x, y) =
x/y.

The next program computes ψ(x, y):

def p s i (x , y) :

re turn x / y

So ψ has O(1) constant complexity cost.

Lemma 12. Geometric mean is a O(1)-decreasing ψ-

recursive computable aggregations if n is known.

Proof. Agc(x1, . . . , xn−1) =

= (
∏n−1

i=1 xi)
1

n−1 = xn

xn

((
∏n−1

i=1 xi)
1

n−1)
n

n =
1
xn

((
∏n

i=1 xi)
1
n)

n

n−1 = 1
xn

Agc(x1, ..., xn)
n

n−1

So ψ(x, y, n) = 1
y
x

n

n−1

The next program computes ψ(x, y, n):

XIX Congreso Español sobre Tecnoloǵıas y Lógica Fuzzy

191

Aggregation ψ Complexity of ψ Ω

Arithmetic mean n
n−1

x+ 1

n−1
y O(1),O(n) R

2

Product x/y O(1) R
2

Geometric mean 1

y
x

n

n−1 O(1),O(n) R
2

Minimum x O(1) x < y
Maximum x O(1) x > y

Bounded sum x− y O(1) x < 1
TABLE II

EXPANSION FUNCTIONS COMPLEXITY COST OF SOME DECREASING

ψ-RECURSIVE COMPUTABLE AGGREGATIONS.

def p h i (x , y , n) :

re turn r e s x∗∗(n / (n−1)) / y

So ψ has O(1) constant complexity cost if n is known.

Lemma 13. Bounded sum (min{1,
∑n

i=1 xi}) is a O(1)-
decreasing ψ-recursive computable aggregations.

Proof. If Agc(x1, . . . , xn) < 1, then Agc(x1, . . . , xn−1) =
Agc(x1, . . . , xn)− xn. So Ω : {(x, y) : x < 1}

The next program computes ψ(x, y):

def p h i (x , y) :

i f x<1:

r e s =x−y

re turn r e s

So ψ has O(1) constant complexity cost.

Lemma 14. Let AgcO(f(n)) and AgcO(g(n)) be the sets of

O(f(n))-decreasing ψ-recursive and O(g(n))-decreasing ψ-

recursive computable aggregations respectively. If f(n) be-

longs to O(g(n)), then

AgcO(f(n)) ⊆ AgcO(g(n))

Proof. Trivial.

V. CONCLUSIONS

The main goal in this paper is to study the behaviour of com-

putable recursive aggregations when the universe of discourse

is changed. It is possible to classify computable recursive

aggregations by the complexity of their expansion and the

reduction function complexity cost. Moreover, it is found a

relation between the complexity of a computable recursive

aggregation and its expansion function cost complexity.

ACKNOWLEDGMENT

This research has been partially supported by the Govern-

ment of Spain (grant TIN2015-66471-P), the Government of

Madrid (grant S2013/ICE-2845) and Complutense University

(UCM Research Group 910149).

REFERENCES

[1] G. Barnett and L. Del Tonga. Data Structures and Algorithms. DotNet-
Slackers, 2008.

[2] G. Beliakov, A. Pradera and T. Calvo. Aggregations Functions: A guide

for Practitioners. Springer, 2007.
[3] B. Brassard. Fundamentals of Algorithmics. Pearson, 2015.
[4] H. Bustince, B. De Baets, J. Fernandez, R. Mesiar and J. Montero.

A generalization of the migrativity property of aggregation functions.
Information Sciences, 191:76 – 85, 2012.

[5] V. Cutello and J. Montero. Recursive connective rules. International Jour-

nal of Uncertainty, Fuzziness and Knowledge-Based Systems, 2(14):3–20,
1999.

[6] A. del Amo, J. Montero and E. Molina. Representation of consistent
recursive rules. European Journal of Operational Research, 130(1):29–
53, 2001.

[7] D. Gómez and J. Montero. A discussion on aggregations operators.
Kybernetika, 40:107–120, 2004.

[8] R. González del Campo, L. Garmendia and J. Montero. Expansible
computable aggregation rules. In Proceedings of the 2015 International

Conference on Intelligent Systems and Knowledge Engineering, ISKE

2015, Taipei, Taiwan, pages 8–11, November 2015.
[9] A. Kolesárová, R. Mesiar and J. Montero. Sequential aggregation of bags.

Information Sciences, 294:305–314, 2015.
[10] J. Giancarlo Lucca, G. Pereira Dimuro, B. R. C. Bedregal, R. Mesiar,

A.árová and H. Bustince. Preaggregation functions: Construction and an
application. IEEE Trans. Fuzzy Systems, 24(2):260–272, 2016.

[11] J. Montero, R. González del Campo, L. Garmendia, D. Gómez and
J. Tinguaro. Computable aggregations. Information Sciences, 2, 2017.

