
I Workshop en Deep Learning

1197

Deep Learning for Fake News Classification

Miguel Molina-Solana

Data Science Institute

Imperial College London

London, UK

m.molina-solana@imperial.ac.uk

Julio Amador

Business School

Imperial College London

London, UK

j.amador@imperial.ac.uk

Juan Gómez Romero

Dept Computer Science and AI

Universidad de Granada

Granada, Spain

jgomez@decsai.ugr.es

Abstract—This work presents the application of several Deep
Learning techniques for Natural Language Processing to the
classification of tweets into containing fake news or not. To
validate our approach, we use an open-access dataset containing
annotated tweets related to the 2016 US elections. From our
experiments, we can confirm that Deep Learning techniques are
indeed able to identify tweets containing fake news, and that
LSTMs with pre-computed embeddings is the best performing
among the tested techniques (validation AUC = 0.70), particularly
in avoiding misclassification of the minority class.

Index Terms—deep learning, fake news, 2016 US elections

I. INTRODUCTION

Since the 2016 US elections, the term ‘fake news’ has

become mainstream and is nowadays commonly used to refer

to pieces of information that are misleading, controversial or

plainly inaccurate. This explosion has brought the attention of

academics and practitioners from several fields, in an attempt

to better understand the phenomenon and its causes.

Although the concept of fake news —as deliberately mis-

leading pieces of information— is nothing new, the wide

availability of social networking, publishing platforms, and

general access to communication tools, has enabled their ulti-

mate wide-spreading, overtaking the usual process of editorial

curating.

Surprisingly enough, the acute characterization of fake news

and its proper definition is elusive, remaining a fundamental

question to be answered [11]. Cultural backgrounds, previous

knowledge and ultimate interpretation of motives behind fake

news play a prominent role on the interpretation of what it

is and what it isn’t a fake news, with plenty of academics

sidelining the difficulty by focusing on the simpler issue of

false news (to refer to those that have been fact-checked).

While diverse, the reasons for promoting fake news get often

reduced to two [3]: pecuniary and ideological. Their impact,

if widely embraced, believed and shared, can indeed be quite

high as suggested by several pundits and academics in relation

to the US presidential election [10].

With fake news becoming commonplace and being cheap to

be generated, tools to flag controversial pieces of information

are most welcome. Some approaches to identify fake news and

their effects on behaviour have been suggested [8]. However,

the question of how viral fake news effectively differ from

other type of viral content remains unanswered.

Although focused on news stories and their mentions in

tweets, a recent study from Vosoughi et al. [16] offers some

insights as to how false news (as opposed to fact-checked

verified news) might get spread. In particular, they report that

falsehood diffused farther and faster than the truth despite

structural elements of the network, not because of them.

On the other hand, Deep Learning models and techniques

have demonstrated great performance and a very high potential

in the recognition of complex patterns in several fields, espe-

cially in Computer Vision and Natural Language Processing.

These models, which closely resemble the organization of

neurons in the brain, mark the evolution of Neural Networks

in an era of large data and very high computational power.

Neural Networks perform a non-linear transformation of the

input values to the output values by means of several layers of

interconnected computing units —i.e. the neurons. Their key

approach is achieving learning by example: they take a (large)

set of samples as training data, usually with already known

labels, and automatically extract the relevant features that can

be used to distinguish among classes, thus yielding a model

able to classify new unknown samples. To do so, the training

process applies an optimization algorithm to adjust the model

parameters in order to minimize the network error.

In this context, it looks sensible to apply Deep Learning

techniques to the task of classifying unseen pieces of infor-

mation into containing fake news or not. The work reported

here precisely looks into this, trying to offer some insights

into the validity of this idea and its ultimate performance.

The paper is organized as follows. Next section introduces

the dataset and algorithms we have used for the study. Sec-

tion III presents the different experiments we carried out and

their results and implications. The work finalizes with some

pointers for further work.

II. MATERIALS AND METHODS

To test our hypothesis, we used a dataset containing tweets

collected during 4 months just after the 2016 US presidential

election [5], starting on November 8th. This dataset includes

tweets that got re-tweeted more than 1000 times, and offer

two sets of manual annotations for each tweet into fake news

or not (Table I), attending to the categories established by [8].

For simplicity, the rest of this paper will consider a tweet as

fake if it has been labeled as such by at least one annotator of

the first or second team.



XVIII Conferencia de la Asociación Española para la Inteligencia Artificial

1198

2nd Label
Other Tweets Fake News Unknown

1st Label
Other Tweets 6482 1444 330
Fake News 213 133 7
Unknown 250 98 44

TABLE I
CONTINGENCY TABLE REPORTING THE DIFFERENCES AND THE

SIMILARITIES BETWEEN THE LABELLING PERFORMED BY THE TWO

TEAMS IN THE USED DATASET.

The complete dataset includes 9000 tweets and 20 variables,

including the text of the tweet itself. After removing registers

with empty values, we have 8336 tweets, with 6445 belonging

to the negative class (not fake) and 1891 to the positive class

(fake). Note that this procedure differs from the one reported

by [4], which only takes into account the labelling by the

second team.

We focus on the task of classifying tweets into fake news or

not using tweet contents. The aim of this paper is to explore

different approaches to build a classifier capable of tagging

unseen viral tweets into fake news or not, and particular, those

involving deep learning techniques. To do so, we will also limit

ourselves to solely work with the actual textual content of the

tweet.

Feed-forward Networks are the most basic and common

type of neural networks. In these networks, computation

moves in one direction, from the input to the output. The

typical model is the perceptron, which defines several layers

of fully-connected neurons. Model training is performed by

backpropagation, a supervised learning algorithm in which the

training loss, obtained as the difference between the expected

result and the model output, is minimized after iterative

adjustment of the model weight values. How the weights are

adjusted is determined by an optimization algorithm such as

the gradient descendent algorithm —and its variants for large

data processing in Deep Learning; e.g. Stochastic Gradient

Descendent (SGD), RMSProp, Adam, AdaGrad, etc.

Recurrent Neural Networks (RNNs) are a type of networks

aimed at processing sequential data. Essentially, this type of

networks compute a result not only from an input sample, but

also by considering its previous state. Therefore, the model

output for two equal samples can be different depending

on the state of the network. Typically, RNNs process an

input sequence xt−1, xt, . . . to produce an output sequence

ot−1, ot, . . . Among them, long short-term memory (LSTM)

networks [15] are particularly appropriate to deal with data

sequences and time series with time lags of unknown size and

duration between important events.

Formally, LSTM units are composed of a cell, an input gate,

an output gate and a forget gate (see diagram in Figure 1).

The cell is responsible for ‘remembering’ values over arbitrary

time intervals —hence the word ‘memory’ in LSTM—, which

are also passed towards the next units. Internally, the LSTM

unit combines the input values, the values received through the

input gate and the memory values to calculate the output values

and the output gate values, taking as well into consideration

the forget gate values.

Finally, and in order to validate our deep learning models

built by following the LSTM approach, we compare their

performance against traditional classification algorithms using

only meta-data about each tweet and author; i.e. number of

retweets, number of friends, etc. Specifically, we will use

Random Forests [6], which are known to generally perform

well in instance classification problems.

The software used for the experimentation is the R frame-

work. We have used the caret package for creation and

validation of the Random Forest classifiers [9] and the ran-

domForest package for the underlying implementation of the

algorithms [12]. For the deep learning techniques, we have

used keras [1] with the tensorflow backend [2].

Due to our dataset being highly unbalanced (as shown

in Table I), accuracy is not a proper metric to measure

performance of the models. Instead we turn our attention to

the ROC (receiver operating characteristic) curve and the AUC

(area under the curve) measure, because they give a better

overview of how true positive rate and false positive rate trade

off.

III. EXPERIMENTS AND DISCUSSION

A. Classification with metadata and Random Forest

In our first experiment, we have used the meta-data columns

—all but the tweet text— to classify the tweets by the

Random Forest algorithm. To do so, we have removed columns

describing tweet id, user id, tweet creation date, and software

used to publish the tweet. The ratio of training and validation

datasets was set to 80-20%. After exploring a parameter grid

through several experiments, parameter mtry, representing the

number of variables randomly selected at each split of the

forest generation process, was set to 4.

The results of this experiment can be seen in Figure 2, which

shows the ROC curves of the classifiers trained with: (a) orig-

inal data; (b) data augmented with the SMOTE algorithm [7]

—using 200 and 100 as percentages for upsampling and

downsampling, respectively. The threshold value for the class

probability is automatically calculated by the randomForest

package.

The AUC values can be seen in Table II. Results with the

original data are unsatisfactory because of the strong bias of

the classifier towards the majority class, and hence, the low

sensitivity values. For this reason, although the AUC value of

the classifier without augmentation is slightly better, we would

select the classifier with augmentation as the baseline result to

improve (AUC = 0.66, sensitivity = 0.74, specificity = 0.51).

The variable importance of the Random Forest classifier

according to Gini measure the is shown in Figure 3. The

results are consistent with the observations in [4] and [16]:

the most descriptive variables are the number of retweets (i.e.

the virality of the tweet) and the number of followers of the

author. Note that other parameters, such as whether the user is

verified or not, are not as relevant as they might be expected.



I Workshop en Deep Learning

1199

Fig. 1. Diagram of a LSTM unit

Fig. 2. ROC curves for the Random Forest classifiers

B. Classification with text and Deep Learning

In the second set of experiments, we have firstly used a

feed-forward network to classify tweets from their contents.

Secondly, we have implemented a LSTM network. In both

cases, it is required to encode the input text into a numeric

input, and then train the network to recognize if a tweet is a

fake news or not.

There are several alternative approaches to perform the text-

to-number encoding. A straightforward approach is one-hot

encoding, in which texts are transformed into number vectors

after the steps below:

1) Tokenize the tweets to extract all the words used in the

texts.

2) Select the top-k used words (k = 10, 000 in our case,

from a total number of 21, 421 tokens).

Fig. 3. Variable importance according to the Random Forest model with data
augmentation

3) Create a binary matrix where each column represents

a top-k word and each row represents a tweet. Set the

corresponding value mi,j to 1 if the word j appears in

tweet i; otherwise, set it to 0.

This approach has several limitations, in particular because

the sparse nature of the encodings resulting after step 3, which

makes it difficult to train the classification model. Recently,

it has been shown that it is better to encode texts as word

embeddings. With this technique, we associate an n-dimension

vector with each word, instead of a binary flag. Accordingly,

a piece of text is a sequence of n-dimension vectors, being

n typically 256, 512 or 1024. The translation from a word

to a n-dimension vector is done in a way that the encoding

somehow preserves the semantics of the original words; e.g.

two encoding vectors corresponding to semantically related

words will be close in the embeddings space.

This implies that embeddings must be also learnt in some

way; e.g. by using algorithms such as the popular word2vec

by Mikolov et al. [13]. While learnt word embeddings would

be specific of the problem domain, it is common to use pre-



XVIII Conferencia de la Asociación Española para la Inteligencia Artificial

1200

computed embeddings from large text corpora, thus avoiding

the problem of reduced input data (as it happens in our

problem) and long execution times (which require costly

computational resources).

In this paper, we have used the Global Vectors for Word

Representation (GloVe) version 1.2 [14]. From the publicly

available editions, we have selected glove.6B, which is trained

with Wikipedia 2014 and Gigaword 5 news dataset, and the

100-dimension embedding space.

After these considerations, we have performed the following

experiments:

• Networks

– Feed-forward networks (one embedding layer, two

hidden layers and an output layer)

∗ with self-trained embeddings

∗ with GloVe word embeddings

– LSTM networks (one embedding layer, a LSTM

layer of 32 units and an output layer)

∗ with self-trained embeddings

∗ with GloVe word embeddings

• Tokenizer: default Keras text tokenizer function

• Embeddings space size: 100

• Loss function: binary crossentropy

• Optimizer: RMSprop

• Epochs: < 10

• Batch size: 32

• Activation function for hidden layers: ReLU

• Activation function for output layer: sigmoid

• Training / validation: 80%, 20%

Note that, despite the simplicity of the network topologies,

overfitting has frequently appeared in the experiments. In such

cases, we have used the most accurate network obtained before

detecting a significant decrease of the validation performance.

Figure 4 shows the ROC curves for validation of each one

of the four models. It can be seen that the best model is the

LSTM trained with GloVe word embeddings, which yields an

AUC = 0.70 with sensitivity = 0.62 and specificity = 0.68 (see

Table II for details).

C. Discussion

The main result from our work is that LSTM with pre-

computed embeddings is the best performer among the tech-

niques we have tested. It is particularly interesting that the

ratio of false negatives, the main problem in an unbalanced

dataset like ours, obtained with this technique is lower than in

the other cases.

However, the overall improvement compared to a Random

Forest using tweets’ meta-data is not extremely high, as we

can see in Figure 5. This poses the question as to how much

is worth the extra computation incurred by LSTMs.

More interestingly, a more detailed study of the errors

incurred by each model should be performed, in order to

identify if both classifiers are orthogonal to some degree. If

this is the case, the next step should be to build an ensemble

method using these two classifiers, and to determine a proper

Fig. 4. ROC curves for the Deep Learning classifiers

aggregation function. From our initial studies, we anticipate

that double-counting the positive detections (tweets including

fake news) could improve the current results.

Fig. 5. ROC curves for the two best classifiers

IV. FUTURE WORK

In this work, we have shown some preliminary results with

off-the-shelf deep learning techniques applied to tweets’ text

in order to identify fake news. Even without a fine-grained

adjustment of hyper-parameters nor a long training phase,

results are quite promising over the tested dataset.



I Workshop en Deep Learning

1201

TABLE II
EXPERIMENT RESULTS

Training Validation

Algorithm Version Accuracy Sensitivity Specificity AUC Accuracy Sensitivity Specificity AUC

RandomForest NoAugmentation 1.00 1.00 1.00 1.00 0.71 0.49 0.77 0.68

RandomForest Augmentation 1.00 1.00 1.00 1.00 0.56 0.74 0.51 0.66

DeepNN NoEmbeddings 0.99 1.00 0.99 1.00 0.56 0.54 0.63 0.60

DeepNN Embeddings 0.96 0.98 0.95 1.00 0.62 0.62 0.64 0.65

DeepLSTM NoEmbeddings 0.95 0.95 0.94 0.99 0.70 0.76 0.49 0.67

DeepLSTM Embeddings 0.76 0.77 0.76 0.83 0.64 0.62 0.68 0.70

We plan applying more complex Deep Learning models

(including a more extensive adjustment of parameters), and

couple them together with a text pre-processing stage in order

to better clean the text (e.g. currently, we are not considering

text elements such as emojis and hyperlinks). It can be

also helpful to tune the embeddings representation, either by

exploring other pre-calculated transformation or by training on

large corpora of only Twitter data.

Furthermore, there seems to be opportunity for ensemble

methods that take into account both the meta-data of tweets

and their actual text. Adding together the classification capa-

bilities of Random Forests on the meta-data and LSTMs on

the text appears as a very promising line of action, which we

are currently exploring.

Finally, this study (and hence its results) is tightly coupled to

and heavily dependent on the employed dataset. A replication

of the experiments on a complementary one is necessary to

further validate the current findings strengthening the conclu-

sions and eventually leading to further insights.

All in all, the application of Deep Learning techniques to

the task of identifying fake news in social media looks like a

very relevant and timely application.

ACKNOWLEDGEMENTS

The authors want to thank the support of the Data Sci-

ence Institute, Imperial College London. M. Molina-Solana

is receiving funding from the European Union’s Horizon

2020 research and innovation programme under the Marie

Sklodowska-Curie grant agreement No 743623. Juan Gómez-

Romero is supported by University of Granada under the

Young Researchers Fellowship, and received funding from the

Spanish Ministry of Education, Culture and Sport under the

José Castillejo Research Stays Programme.

REFERENCES

[1] J. Allaire and F. Chollet. keras: R Interface to ’Keras’. R package
version 2.1.6.9001.

[2] J. Allaire and Y. Tang. tensorflow: R Interface to ’TensorFlow’. R
package version 1.5.0.9001.

[3] H. Allcott and M. Gentzkow. Social media and fake news in the
2016 election. Technical Report 23089, National Bureau of Economic
Research, 2017.

[4] J. Amador, A. Oehmichen, and M. Molina-Solana. Characterizing
Political Fake News in Twitter by its Meta-Data. arXiv, 2017.

[5] J. Amador, A. Oehmichen, and M. Molina-Solana. Fakenews on
2016 US elections viral tweets (November 2016 - March 2017).
http://dx.doi.org/10.5281/zenodo.1048826, 2017.

[6] L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

[7] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer.
Smote: synthetic minority over-sampling technique. Journal of artificial

intelligence research, 16:321–357, 2002.
[8] N. J. Conroy, Y. Chen, and V. L. Rubin. Automatic deception detection:

Methods for finding fake news. In Proceedings of the 78th ASIS&T

Annual Meeting: Information Science with Impact: Research in and for

the Community, pages 82:1–82:4, 2015.
[9] M. K. C. from Jed Wing, S. Weston, A. Williams, C. Keefer, A. Engel-

hardt, T. Cooper, Z. Mayer, B. Kenkel, the R Core Team, M. Benesty,
R. Lescarbeau, A. Ziem, L. Scrucca, Y. Tang, C. Candan, and T. Hunt.
caret: Classification and Regression Training, 2018. R package version
6.0-79.

[10] R. Gunther, E. C. Nisbet, and P. Beck. Fake news may have contributed
to trump’s 2016 victory. Technical report, Ohio State University, 2018.

[11] D. M. J. Lazer, M. A. Baum, Y. Benkler, A. J. Berinsky, K. M. Greenhill,
F. Menczer, M. J. Metzger, B. Nyhan, G. Pennycook, D. Rothschild,
M. Schudson, S. A. Sloman, C. R. Sunstein, E. A. Thorson, D. J. Watts,
and J. L. Zittrain. The science of fake news. Science, 359(6380):1094–
1096, 2018.

[12] A. Liaw and M. Wiener. Classification and regression by randomforest.
R News, 2(3):18–22, 2002.

[13] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of
word representations in vector space. arXiv preprint arXiv:1301.3781,
2013.

[14] J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors
for word representation. In Empirical Methods in Natural Language

Processing (EMNLP), pages 1532–1543, 2014.
[15] S. H. J. Schmidhuber. Long short-term memory. Neural Computation,

9(8):1735–1780, 1997.
[16] S. Vosoughi, D. Roy, and S. Aral. The spread of true and false news

online. Science, 359(6380):1146–1151, 2018.


